cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254005 Numbers that divide the reverse of the sum of their aliquot parts.

This page as a plain text file.
%I A254005 #30 Sep 08 2022 08:46:11
%S A254005 1,6,2274,44304,229974,498906,4177662,20671542,22999974,41673714,
%T A254005 73687923,403999652,479444901,4158499614,27378395352,209659386726,
%U A254005 216276435966,229999999974,406406685462,922964834547
%N A254005 Numbers that divide the reverse of the sum of their aliquot parts.
%C A254005 Noting 2274, 229974, and 22999974, 23*10^n-26 is a term herein for any n in A253968. - _Hans Havermann_, Jan 24 2015
%C A254005 Additionally, 404*10^(6*n)-348 is a term herein if this is 28 times a prime. Three such numbers are known: n = 1, 10, and 1608. - _Hans Havermann_, Jan 28 2015
%C A254005 a(21) > 10^12. - _Giovanni Resta_, May 09 2015
%e A254005 sigma(1) - 1 = 0, Rev(0) = 0 and 0 / 1 = 0.
%e A254005 sigma(6) - 6 = 6, Rev(6) = 6 and 6 / 6 = 1.
%e A254005 sigma(2274) - 2274 = 2286, Rev(2286) = 6822 and 6822 / 2274 = 3.
%p A254005 with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
%p A254005 for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
%p A254005 od; y; end:
%p A254005 P:=proc(q) local n; for n from 1 to q do
%p A254005 if type(T(sigma(n)-n)/n,integer) then print(n);
%p A254005 fi; od; end: P(10^9);
%t A254005 fQ[n_] := Mod[ FromDigits@ Reverse@ IntegerDigits[ DivisorSigma[1, n] - n], n] == 0; k = 1; lst = {}; While[k < 1000000001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst (* _Robert G. Wilson v_, Jan 28 2015 *)
%o A254005 (PARI) rev(n) = subst(Polrev(digits(n)), x, 10);
%o A254005 isok(n) = rev(sigma(n)-n) % n == 0; \\ _Michel Marcus_, Jan 25 2015
%o A254005 (Magma) [n: n in [1..10^7] | Seqint(Reverse(Intseq(SumOfDivisors(n)-n))) mod n eq 0]; // _Vincenzo Librandi_, May 09 2015
%Y A254005 Cf. A000203, A001065, A253968, A254004.
%K A254005 nonn,base,more
%O A254005 1,2
%A A254005 _Paolo P. Lava_, Jan 22 2015
%E A254005 More terms from _Hans Havermann_, Jan 24 2015
%E A254005 a(13) from _Robert G. Wilson v_, Jan 29 2015
%E A254005 a(14)-a(20) from _Giovanni Resta_, May 09 2015