This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254027 #26 Dec 18 2017 19:46:40 %S A254027 0,2,-1,8,1,-3,26,7,-1,-7,80,25,5,-5,-15,242,79,23,1,-13,-31,728,241, %T A254027 77,19,-7,-29,-63,2186,727,239,73,11,-23,-61,-127,6560,2185,725,235, %U A254027 65,-5,-55,-125,-255,19682,6559,2183,721,227,49,-37,-119,-253,-511,59048,19681,6557,2179,713,211,17,-101,-247,-509,-1023 %N A254027 Table T(n,k) = 3^n - 2^k read by antidiagonals. %C A254027 Table shows differences of a given power of 3 to the powers of 2 (columns), and differences of the powers of 3 to a given power of 2 (rows), respectively. %C A254027 Note that positive terms (table's upper right area) and negative terms (lower left area) are separated by an imaginary line with slope -log(3)/log(2) = -1.5849625.. (see A020857). This "border zone" of the table is of interest in terms of how close powers of 3 and powers of 2 can get: i.e., those T(n,k) where k/n is a good rational approximation to log(3)/log(2), see A254351 for numerators k and respective A060528 for denominators n. %H A254027 K. G. Stier, <a href="/A254027/b254027.txt">Table of n, a(n) for n = 0..5150</a> %e A254027 Table begins %e A254027 0 2 8 26 80.. %e A254027 -1 1 7 25 79.. %e A254027 -3 -1 5 23 73.. %e A254027 -7 -5 1 19 65.. %e A254027 -15 -13 -7 11 49.. %e A254027 .. .. .. .. .. %t A254027 Table[3^(n-k) - 2^k, {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 18 2017 *) %o A254027 (PARI) for(i=0, 10, { %o A254027 for(j=0, i, print1((3^(i-j)-2^j),", ")) %o A254027 }); %Y A254027 Row 0 (=3^n-1) is A024023. %Y A254027 Row 1 (=3^n-2) is A058481. %Y A254027 Row 2 (=3^n-4) is A168611. %Y A254027 Column 0 (=1-2^n) is (-1)A000225. %Y A254027 Column 1 (=3-2^n) is (-1)A036563. %Y A254027 Column 2 (=9-2^n) is (-1)A185346. %Y A254027 Column 3 (=27-2^n) is (-1)A220087. %Y A254027 0,0-Diagonal (=3^n-2^n) is A001047. %Y A254027 1,0-Diagonal (=3^n-2^(n-1)) for n>0 is A083313 or A064686. %Y A254027 0,1-Diagonal (=3^n-2^(n+1)) is A003063. %Y A254027 0,2-Diagonal (=3^n-2^(n+2)) is A214091. %K A254027 sign,tabl %O A254027 0,2 %A A254027 _K. G. Stier_, Jan 22 2015