cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254029 Positive solutions of Monkey and Coconuts Problem for the classic case (5 sailors, 1 coconut to the monkey): a(n) = 15625*n - 4 for n >= 1.

This page as a plain text file.
%I A254029 #60 Apr 17 2025 01:56:48
%S A254029 15621,31246,46871,62496,78121,93746,109371,124996,140621,156246,
%T A254029 171871,187496,203121,218746,234371,249996,265621,281246,296871,
%U A254029 312496,328121,343746,359371,374996,390621,406246,421871,437496,453121,468746
%N A254029 Positive solutions of Monkey and Coconuts Problem for the classic case (5 sailors, 1 coconut to the monkey): a(n) = 15625*n - 4 for n >= 1.
%C A254029 The sequence lists the numbers of coconuts originally collected on a pile. This is the case s=5, c=1 in the general formula b(n) = n*s^(s+1) - c*(s-1).
%C A254029 {a(n) = 5^6*n - 4}_{n>=1} gives the positive solutions to the following problem: co(k) = (4/5)*(co(k-1) - 1), for k >= 0, with co(0) = a, and the requirement c0(5) - 1 == 0 (mod 5). This gives co(5) - 1 = (2^10*a - 7*3^3*61)/5^5, with a = a(n), n >= 1. See a formula below. - Richard S. Fischer and _Wolfdieter Lang_, Jun 01 2023
%D A254029 Charles S. Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pages 52-54.
%D A254029 Miodrag S. Petković, "The sailors, the coconuts, and the monkey", Famous Puzzles of Great Mathematicians, Amer. Math. Soc.(AMS), 2009, pages 52-56.
%H A254029 Luciano Ancora, <a href="/A254029/b254029.txt">Table of n, a(n) for n = 1..1000</a>
%H A254029 Umberto Cerruti, <a href="http://share.dschola.it/helpmat/Divertimenti/divertiamoci1.html#sol3.3">Marinai e noci di cocco</a>, Divertiamoci con la Matematica (in Italian)
%H A254029 Santo D'Agostino, <a href="https://fomap.org/2011/05/13/the-coconut-problem/">"The Coconut Problem"; Updated With Solution</a>, May 2011.
%H A254029 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MonkeyandCoconutProblem.html">Monkey and Coconut Problem</a>
%H A254029 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A254029 G.f.: x*(15621 + 4*x)/(1 - x)^2.
%F A254029 a(n) = 2*a(n-1) - a(n-2) = a(n-1) + 15625, with a(0) = -4 and a(-1) = -(4 + 5^6). a(n) = 5^6*n - 4.
%F A254029 a(n) = (15*c(n) + 11) + 265*(c(n) + 1)/2^10, with c(n) = A158421(n) = 2^10*n - 1, for n >= 1. - Richard S. Fischer and _Wolfdieter Lang_, Jun 01 2023
%t A254029 s = 5; c = 1; Table[n s^(s + 1) - c (s - 1), {n, 1, 30}] (* or *)
%t A254029 CoefficientList[Series[(15621 + 4 x)/(-1 + x)^2, {x, 0, 29}], x]
%o A254029 (Python 3.x)
%o A254029 seq=[]
%o A254029 for x in range (1,1000000):
%o A254029     total_c,i = x,1
%o A254029     while i < 6:
%o A254029         if (total_c)%5 == 1:
%o A254029             total_c = total_c - (total_c)//5 -1
%o A254029             if i == 5:
%o A254029                 #print (x,total_c)
%o A254029                 break
%o A254029         i += 1
%o A254029     if total_c%5 == 1:
%o A254029         seq.append(x)
%o A254029 # _Glen Gilchrist_, Jan 28 2023
%Y A254029 Cf. A002021, A002022, A006091, A014293, A085283, A085606, A158421.
%K A254029 nonn,easy
%O A254029 1,1
%A A254029 _Luciano Ancora_, Mar 14 2015