This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254042 #82 Jan 30 2025 11:22:16 %S A254042 2,0,22,47,38,436,736,2322,3912,47262,123398,263600,679530,725244, %T A254042 8118161,5690326 %N A254042 a(n) is the smallest nonnegative integer such that a(n)! contains a string of exactly n consecutive 1's. %e A254042 a(0) = 2 since 2! equals 2, which does not contain any '1'. %e A254042 a(1) = 0 since 0! equals 1, which contains '1' but not '11'. %e A254042 a(2) = 22 since 22! equals 1124000727777607680000, which contains '11', and 22 is the smallest integer for which this condition is met. %t A254042 f[n_] := Block[{k = 0, s = ToString[(10^n - 1)/9]}, While[ Length@ StringPosition[ ToString[k!], s] != 1, j = k++]; k]; f[0] = 2; Array[f, 12, 0] (* _Robert G. Wilson v_, Feb 27 2015 *) %o A254042 (Python) %o A254042 # Output doesn't include a(0). %o A254042 def A254042(): %o A254042 index = 1 %o A254042 k = 0 %o A254042 f = 1 %o A254042 u = '1' %o A254042 while True: %o A254042 sf = str(f) %o A254042 if u in sf and u+'1' not in sf: %o A254042 print("A254042("+str(index)+") = " +str(k)) %o A254042 index += 1 %o A254042 k = 0 %o A254042 f = 1 %o A254042 u +='1' %o A254042 k += 1 %o A254042 f *= k %o A254042 return %o A254042 (PARI) a(n)=k=0;while(k<10^4,d=digits(2*10^(#(digits(k!))+1)+10*k!);for(j=1,#d-n+1,c=0;for(i=j,j+n-1,if(d[i]==1,c++);if(d[i]!=1,c=0;break));if(c==n&&d[j+n]!=1&&d[j-1]!=1,return(k)));if(c==n,return(k));if(c!=n,k++)) %o A254042 for(n=1,6,print1(a(n),", ")) \\ _Derek Orr_, Jan 29 2015 %o A254042 (PARI) max1s(n)=my(v=digits(n),r,t);for(i=1,#v,if(v[i]==1,t++,r=max(r,t);t=0));max(t,r) %o A254042 a(n)=my(m=0); while(max1s(m!)!=n, m++); m \\ _Charles R Greathouse IV_, Jan 30 2015 %Y A254042 Cf. A254447, A254448, A254449, A254500, A254501, A254502, A254716, A254717, A252652. %K A254042 nonn,base,more %O A254042 0,1 %A A254042 _Martin Y. Champel_, Jan 25 2015 %E A254042 a(11) from _Jon E. Schoenfield_, Feb 22 2015 %E A254042 a(12), a(13) from _Jon E. Schoenfield_, Mar 07 2015, Mar 08 2015 %E A254042 a(14)-a(15) from _Bert Dobbelaere_, Oct 29 2018