cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254043 a(n) is the smallest number not already used such that the sum of the first n terms is semiprime.

This page as a plain text file.
%I A254043 #33 Jan 08 2025 11:05:42
%S A254043 4,2,3,1,5,6,12,13,9,7,15,8,10,11,16,19,14,22,17,20,21,18,25,23,26,28,
%T A254043 27,29,34,24,32,36,42,35,41,30,33,31,40,46,43,39,38,48,44,47,45,50,37,
%U A254043 56,51,49,55,60,58,63,53,64,62,52,54,66,57,69,70,80,61,68,59,65,71,72,81,76,83
%N A254043 a(n) is the smallest number not already used such that the sum of the first n terms is semiprime.
%C A254043 Is this a permutation of the natural numbers? - _Derek Orr_, Feb 07 2015
%e A254043 a(3) = 3 because 3 is the smallest number not already used such that the sum of all 3 terms (4 + 2 + 3 = 9) is semiprime.
%p A254043 N:= 1000: # get all terms before the first term > N
%p A254043 S:= {$1..N} minus {4}:
%p A254043 T:= 4: A[1]:= 4:
%p A254043 for n from 2 do
%p A254043   found:= false;
%p A254043   for s in S do
%p A254043     if numtheory:-bigomega(s+T) = 2 then
%p A254043        A[n]:= s;
%p A254043        S:= S minus {s};
%p A254043        T:= s + T;
%p A254043        found:= true;
%p A254043        break
%p A254043     fi
%p A254043   od:
%p A254043   if not found then break fi;
%p A254043 od:
%p A254043 seq(A[i],i=1..n-1); # _Robert Israel_, Mar 24 2015
%t A254043 f[n_] := Block[{k, s = Select[Range[2(n^2 + n)/3], PrimeOmega@ # == 2 &], t = Table[4, {n}]}, For[k = 2, k <= n, k++, t[[k]] = Min@ Select[s - Total[Take[t, k - 1]], # > 0 && ! MemberQ[t, #] &]]; t]; f@ 75 (* _Michael De Vlieger_, Mar 24 2015 *)
%o A254043 (PARI) v=[4];n=1;while(n<100,if(bigomega(vecsum(v)+n)==2&&!vecsearch(vecsort(v),n),v=concat(v,n);n=0);n++);v \\ _Derek Orr_, Feb 07 2015
%Y A254043 Cf. A001358, A054408, A287662.
%K A254043 nonn,easy
%O A254043 1,1
%A A254043 _G. L. Honaker, Jr._, Jan 23 2015