A254070 a(n) = -1 + (3/2)^(-1 + v(1 + F(4*n - 3)))*(1 + F(4*n - 3)), where v(y) is the 2-adic valuation of y, F(x) = (3*x + 1)/2^v(3*x + 1), and x == 1 (mod 2).
1, 1, 17, 5, 13, 1, 29, 17, 25, 17, 161, 17, 37, 5, 65, 53, 49, 13, 125, 29, 61, 1, 101, 53, 73, 29, 269, 41, 85, 17, 137, 161, 97, 25, 233, 53, 109, 17, 173, 89, 121, 161, 1457, 65, 133, 17, 209, 161, 145, 37, 341, 77, 157, 5, 245, 125, 169, 65, 593, 89, 181, 53, 281, 485, 193, 49, 449, 101, 205, 13
Offset: 1
Keywords
Links
- Ruud H.G. van Tol, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
v[y_] := IntegerExponent[y, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[n_] := -1 + (3/2)^(-1 + v[1 + f[4*n - 3]])*(1 + f[4*n - 3]); Table[s[n], {n, 70}] (* L. Edson Jeffery, Mar 29 2021 *)
-
PARI
a(n) = my(x=3*n-2, v=valuation(x,2)); x>>=v; v=valuation(x+1, 2)-1; ((x>>v)+1)*3^v-1; \\ Ruud H.G. van Tol, Jul 16 2023
Formula
a(n) = 4*A257480(n) - 3. - L. Edson Jeffery, Mar 29 2021
Extensions
New name by L. Edson Jeffery, Mar 29 2021
Comments