cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254070 a(n) = -1 + (3/2)^(-1 + v(1 + F(4*n - 3)))*(1 + F(4*n - 3)), where v(y) is the 2-adic valuation of y, F(x) = (3*x + 1)/2^v(3*x + 1), and x == 1 (mod 2).

Original entry on oeis.org

1, 1, 17, 5, 13, 1, 29, 17, 25, 17, 161, 17, 37, 5, 65, 53, 49, 13, 125, 29, 61, 1, 101, 53, 73, 29, 269, 41, 85, 17, 137, 161, 97, 25, 233, 53, 109, 17, 173, 89, 121, 161, 1457, 65, 133, 17, 209, 161, 145, 37, 341, 77, 157, 5, 245, 125, 169, 65, 593, 89, 181, 53, 281, 485, 193, 49, 449, 101, 205, 13
Offset: 1

Views

Author

L. Edson Jeffery, May 03 2015

Keywords

Comments

a(n) is the first successor in the 3x+1 trajectory of 4*n-3 that is congruent to 1 mod 4. - Ruud H.G. van Tol, Jul 16 2023

Crossrefs

Programs

  • Mathematica
    v[y_] := IntegerExponent[y, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; s[n_] := -1 + (3/2)^(-1 + v[1 + f[4*n - 3]])*(1 + f[4*n - 3]); Table[s[n], {n, 70}] (* L. Edson Jeffery, Mar 29 2021 *)
  • PARI
    a(n) = my(x=3*n-2, v=valuation(x,2)); x>>=v; v=valuation(x+1, 2)-1; ((x>>v)+1)*3^v-1; \\ Ruud H.G. van Tol, Jul 16 2023

Formula

a(n) = 4*A257480(n) - 3. - L. Edson Jeffery, Mar 29 2021

Extensions

New name by L. Edson Jeffery, Mar 29 2021