cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254131 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = A254067(n,k) - A257499(n,k), n,k >= 1.

This page as a plain text file.
%I A254131 #19 Nov 05 2015 14:31:32
%S A254131 0,1,-1,2,2,-2,41,13,3,-3,30,90,24,4,-4,501,209,139,35,5,-5,322,1102,
%T A254131 388,188,46,6,-6,5041,2253,1703,567,237,57,7,-7,3110,11090,4184,2304,
%U A254131 746,286,68,8,-8,47501,21769,17139,6115,2905,925,335,79,9,-9
%N A254131 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = A254067(n,k) - A257499(n,k), n,k >= 1.
%F A254131 A(n,k) = (1 + (3^n - 2^(n + 1))*(6*k - 3 + 2*(-1)^n))/6, n,k >= 1.
%e A254131 A begins:
%e A254131 .       0     -1     -2     -3     -4     -5     -6     -7     -8     -9
%e A254131 .       1      2      3      4      5      6      7      8      9     10
%e A254131 .       2     13     24     35     46     57     68     79     90    101
%e A254131 .      41     90    139    188    237    286    335    384    433    482
%e A254131 .      30    209    388    567    746    925   1104   1283   1462   1641
%e A254131 .     501   1102   1703   2304   2905   3506   4107   4708   5309   5910
%e A254131 .     322   2253   4184   6115   8046   9977  11908  13839  15770  17701
%e A254131 .    5041  11090  17139  23188  29237  35286  41335  47384  53433  59482
%e A254131 .    3110  21769  40428  59087  77746  96405 115064 133723 152382 171041
%e A254131 .   47501 104502 161503 218504 275505 332506 389507 446508 503509 560510
%t A254131 (* Array: *)
%t A254131 A254131[n_, k_] := (1 + (3^n - 2^(n + 1))*(6*k - 3 + 2*(-1)^n))/6; Grid[Table[A254131[n, k], {n, 10}, {k, 10}]]
%t A254131 (* Array antidiagonals flattened: *)
%t A254131 Flatten[Table[(1 + (3^(n - k + 1) - 2^(n - k + 2))*(6*k - 3 + 2*(-1)^(n - k + 1)))/6, {n, 10}, {k, n}]]
%K A254131 sign,tabl
%O A254131 1,4
%A A254131 _L. Edson Jeffery_, May 03 2015