A254135 Decimal expansion of Lamb's integral K_2.
6, 9, 2, 6, 6, 0, 8, 1, 5, 1, 5, 2, 6, 4, 7, 5, 0, 6, 5, 0, 9, 4, 3, 1, 1, 8, 5, 8, 8, 4, 2, 7, 2, 4, 5, 8, 4, 6, 7, 1, 3, 4, 8, 3, 2, 8, 0, 7, 6, 6, 8, 8, 4, 2, 5, 8, 0, 7, 2, 0, 4, 5, 6, 9, 7, 1, 4, 9, 0, 6, 3, 0, 2, 1, 6, 3, 0, 0, 7, 0, 5, 2, 1, 4, 3, 3, 9, 1, 1, 7, 7, 2, 8, 2, 0, 4, 4, 2, 8, 6, 8, 3, 9
Offset: 0
Examples
0.69266081515264750650943118588427245846713483280766884258...
Links
- D. H. Bailey, J. M. Borwein, and R. E. Crandall, Advances in the theory of box integrals (2010) p. 18.
- Eric Weisstein's World of Mathematics, Inverse Tangent Integral.
Programs
-
Maple
evalf(int(sqrt(1 + sec(x)^2)*arctan(1/sqrt(1 + sec(x)^2)), x=0..Pi/4), 120); # Vaclav Kotesovec, Jan 26 2015
-
Mathematica
Ti2[x_] := (I/2)* (PolyLog[2, -I *x] - PolyLog[2, I *x]); K2 = (1/2)*Ti2[-2 + Sqrt[3]] + (Pi/8)*Log[2 + Sqrt[3]] + Pi^2/32 // Re; RealDigits[K2, 10, 103] // First
Formula
K_2 = integral_[0..Pi/4] sqrt(1 + sec(x)^2)*arctan(1/sqrt(1 + sec(x)^2)) dx.
K_2 = (1/2)*Ti_2(-2 + sqrt(3)) + (Pi/8)*log(2 + sqrt(3)) + Pi^2/32, where Ti_2 is Lewin's arctan integral, Ti_2(x) = (i/2)*(Li_2(-i*x) - Li_2(i*x)).