cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254141 The average of a(n) consecutive Fibonacci numbers is never an integer.

This page as a plain text file.
%I A254141 #25 Jan 12 2025 11:10:37
%S A254141 8,16,21,28,32,40,52,55,56,64,65,68,69,80,84,85,87,88,92,93,99,104,
%T A254141 105,112,117,119,128,132,133,136,140,141,145,148,152,153,155,156,160,
%U A254141 161,164,165,171,172,176,184,187,188,196,200,203,204,205,207,208,209,212
%N A254141 The average of a(n) consecutive Fibonacci numbers is never an integer.
%C A254141 Subset of A033949 and A175594 (essentially the same sequence).
%C A254141 Numbers of the form 2^k, with k>=3, appear to be part of the sequence.
%C A254141 The file "List of indexes and steps (k, x, y)" (see Links) for k = 1, 2, 3, 4, ... consecutive Fibonacci numbers gives the minimum index to start to calculate the average ( x ) and the step to add to get all the other averages ( y ).
%C A254141 E.g.: for k = 7 we have 7, 6, 8. This means that we must start from the 6th Fibonacci number to add 7 consecutive Fibonacci numbers and get an average that is an integer. Fibonacci(6) + Fibonacci(7) + ... + Fibonacci(12) = 8 + 13 + 21 + 34 + 55 + 89 + 144 = 364 and 364 / 7 = 52.
%C A254141 Then 6 + 1*8 = 14, 6 + 2*8 = 22, 6 + 3*8 = 30, etc. are the other indexes:
%C A254141 Fibonacci(14) + Fibonacci (15) + ... + Fibonacci(20) = 377 + 610 + 987 + 1597 + 2584 + 4181 + 6765 = 17101 and 17101 / 7 = 2443;
%C A254141 Fibonacci(22) + Fibonacci(23) + ... + Fibonacci(28) = 17711 + 28657 + 46368 + 75025 + 121393 + 196418 + 317811 = 803383 and 803383 / 7 = 114769;
%C A254141 Fibonacci(30) + Fibonacci(31) + ... + Fibonacci(36) = 832040 + 1346269 + 2178309 + 3524578 + 5702887 + 9227465 + 14930352 = 37741900 and 37741900 / 7 = 5391700; etc.
%C A254141 In particular we note that:
%C A254141 x = 0 is A219612; x = 1 is A124456; x = 0 and y = k - 1 is A106535;
%C A254141 y = 1 is A141767; x = k - 1 and y = k + 1 is A000057;
%C A254141 x = y - 1 or y|k is A023172; y = k is A000351;
%C A254141 x = y - k + 1 appears to give only prime numbers: 3,11,19,31,59,71,79,131,179,191,239,251,271,311,359,379,419,431,439,479,491,499,571,599,631,659,719,739,751,839,971, etc.
%H A254141 Paolo P. Lava, <a href="/A254141/b254141.txt">Table of n, a(n) for n = 1..200</a>
%H A254141 Paolo P. Lava, <a href="/A254141/a254141.txt">List of indexes and steps (k, x, y)</a>
%p A254141 with(numtheory); with(combinat):P:=proc(q) local a,b,k,j,n,ok;
%p A254141 for j from 1 to q do b:=0; ok:=1;
%p A254141 for n from 0 to q do a:=add(fibonacci(n+k),k=0..j-1)/j;
%p A254141 if type(a,integer) then ok:=0; break; fi; od;
%p A254141 if ok=1 then print(j); fi; od; end: P(20000);
%Y A254141 Cf. A000045, A000057, A000071, A023172, A033949, A106535, A124456, A141767, A175594, A219612.
%K A254141 nonn
%O A254141 1,1
%A A254141 _Paolo P. Lava_, Jan 26 2015