cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254143 Products of any two not necessarily distinct terms of A237424.

This page as a plain text file.
%I A254143 #14 Nov 12 2024 22:17:33
%S A254143 1,4,7,16,28,34,37,49,67,136,148,238,259,268,334,337,367,469,667,1156,
%T A254143 1258,1336,1348,1369,1468,2278,2338,2359,2479,2569,2668,3334,3337,
%U A254143 3367,3667,4489,4669,6667,11356,11458,12358,12469,12478,13336,13348,13468,13579
%N A254143 Products of any two not necessarily distinct terms of A237424.
%C A254143 Digits are in nondecreasing order for all terms in decimal representation;
%C A254143 a(396) = 1123456789 = 3367 * 333667 is the smallest term containing all nonzero decimal digits: A254323(396) = 123456789;
%C A254143 A254323(n) = A137564(a(n)).
%H A254143 Reinhard Zumkeller, <a href="/A254143/b254143.txt">Table of n, a(n) for n = 1..10000</a>
%H A254143 Reinhard Zumkeller, <a href="/A254143/a254143.txt">First 10000 products of any two terms of A237424</a>
%e A254143 Initial terms of A237424: 1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334 ...
%e A254143 .  n | a(n) = A237424(i) * A237424(j)
%e A254143 . ---+-------------------------------
%e A254143 .  1 |    1 = 1 * 1   = A237424(1)^2
%e A254143 .  2 |    4 = 1 * 4   = A237424(1) * A237424(2)
%e A254143 .  3 |    7 = 1 * 7   = A237424(1) * A237424(3)
%e A254143 .  4 |   16 = 4 * 4   = A237424(2)^2
%e A254143 .  5 |   28 = 4 * 7   = A237424(2) * A237424(3)
%e A254143 .  6 |   34 = 1 * 34  = A237424(1) * A237424(4)
%e A254143 .  7 |   37 = 4 * 37  = A237424(1) * A237424(5)
%e A254143 .  8 |   49 = 7 * 7   = A237424(3)^2
%e A254143 .  9 |   67 = 1 * 67  = A237424(1) * A237424(6)
%e A254143 . 10 |  136 = 4 * 34  = A237424(2) * A237424(4)
%e A254143 . 11 |  148 = 4 * 37  = A237424(2) * A237424(5)
%e A254143 . 12 |  238 = 7 * 34  = A237424(3) * A237424(4)
%e A254143 . 13 |  259 = 7 * 37  = A237424(3) * A237424(5)
%e A254143 . 14 |  268 = 4 * 67  = A237424(2) * A237424(6)
%e A254143 . 15 |  334 = 1 * 334 = A237424(1) * A237424(7)
%e A254143 . 16 |  337 = 1 * 337 = A237424(1) * A237424(8)
%e A254143 . 17 |  367 = 1 * 367 = A237424(1) * A237424(9)
%e A254143 . 18 |  469 = 7 * 67  = A237424(3) * A237424(6)
%e A254143 . 19 |  667 = 1 * 34  = A237424(1) * A237424(10)
%e A254143 . 20 | 1156 = 34 * 34 = A237424(4)^2
%e A254143 see link for more.
%o A254143 (Haskell)
%o A254143 import Data.Set (empty, fromList, deleteFindMin, union)
%o A254143 import qualified Data.Set as Set (null)
%o A254143 a254143 n = a254143_list !! (n-1)
%o A254143 a254143_list = f a237424_list [] empty where
%o A254143    f xs'@(x:xs) zs s
%o A254143      | Set.null s || x < y = f xs zs' (union s $ fromList $ map (* x) zs')
%o A254143      | otherwise           = y : f xs' zs s'
%o A254143      where zs' = x : zs
%o A254143            (y, s') = deleteFindMin s
%o A254143 (PARI) listA237424(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
%o A254143 list(lim)=my(v=List(),u=listA237424(lim),t); for(i=1,#u, for(j=1,i, t=u[i]*u[j]; if(t>lim,break); listput(v,t))); Set(v) \\ _Charles R Greathouse IV_, May 13 2015
%Y A254143 Subsequence of A009994.
%Y A254143 Cf. A237424, A254323, A137564, A254338 (initial digits), A254339 (final digits).
%K A254143 nonn
%O A254143 1,2
%A A254143 _Reinhard Zumkeller_, Jan 28 2015