This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254149 #20 Feb 16 2025 08:33:24 %S A254149 1,4,8,1,4,3,2,6,3,6,5,2,1,0,6,4,7,4,9,7,4,8,7,6,9,1,4,0,7,2,7,6,5,8, %T A254149 3,0,2,5,7,0,9,5,2,6,3,4,1,5,4,8,6,1,0,4,8,8,7,7,5,3,7,8,9,6,7,1,6,8, %U A254149 2,3,9,9,1,0,3,5,0,7,1,2,8,8,9,1,6,3,6,9,5,7,7,9,8,6,9,0,5,5,2,9,1,8,5 %N A254149 Decimal expansion of the average reciprocal length of a line segment picked at random in a unit 4-cube. %H A254149 D. H. Bailey, J. M. Borwein, and R. E. Crandall, <a href="https://doi.org/10.1090/S0025-5718-10-02338-0">Advances in the theory of box integrals</a>, Math. Comp. 79 (2010), 1839-1866. See p. 25. %H A254149 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HypercubeLinePicking.html">Hypercube Line Picking</a> %H A254149 Eric Weisstein World of Mathematics, <a href="https://mathworld.wolfram.com/InverseTangentIntegral.html">Inverse Tangent Integral</a> %F A254149 Delta_4(-1) = Integral over a unit 4-cube of 1/sqrt((r1-q1)^2+(r2-q2)^2+(r3-q3)^2+(r4-q4)^2) dr dq. %F A254149 Delta_4(-1) = -152/315 - 8*Pi/15 - 16/5*log(2) + 2/5*log(3) + 68/105*sqrt(2) - 16/35*sqrt(3) + 4/5*log(1 + sqrt(2)) + 32/5*log(1 + sqrt(3)) - 8/3*Catalan + 8*Ti2(3 - 2*sqrt(2)) - 8/5*sqrt(2)*arctan(sqrt(2)/4), where Ti2 is Lewin's arctan integral. %e A254149 1.481432636521064749748769140727658302570952634154861... %t A254149 Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); Delta4[-1]=-152/315 - 8*Pi/15 - 16/5*Log[2] + 2/5*Log[3] + 68/105*Sqrt[2] - 16/35*Sqrt[3] + 4/5*Log[1 + Sqrt[2]] + 32/5*Log[1 + Sqrt[3]] - 8/3*Catalan + 8*Ti2[3 - 2 Sqrt[2]] - 8/5*Sqrt[2]*ArcTan[Sqrt[2]/4] // Re; RealDigits[Delta4[-1], 10, 103] // First %o A254149 (Python) %o A254149 from mpmath import * %o A254149 mp.dps=104 %o A254149 x=3 - 2*sqrt(2) %o A254149 Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x)) %o A254149 C=-152/315 - 8*pi/15 - 16/5*log(2) + 2/5*log(3) + 68/105*sqrt(2) - 16/35*sqrt(3) + 4/5*log(1 + sqrt(2)) + 32/5*log(1 + sqrt(3)) - 8/3*catalan + 8*Ti2x - 8/5*sqrt(2)*atan(sqrt(2)/4) %o A254149 print([int(n) for n in list(str(C.real).replace('.','')[:-1])]) # _Indranil Ghosh_, Jul 03 2017 %Y A254149 Cf. A073012, A091505, A103983, A242588, A254140. %K A254149 nonn,cons,easy %O A254149 1,2 %A A254149 _Jean-François Alcover_, Jan 26 2015