cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254157 a(n) = binomial(3*n,n)^n.

This page as a plain text file.
%I A254157 #5 Jan 26 2015 12:50:41
%S A254157 1,3,225,592704,60037250625,244217432431215243,
%T A254157 40928832685064366701940736,287432029715751041166252933120000000,
%U A254157 85609985515193235253656684862285741981771256961,1091210761769150876962680951989752349788052377750396728515625
%N A254157 a(n) = binomial(3*n,n)^n.
%C A254157 Generally, for p > 1 is
%C A254157 binomial(p*n,n) ~ (p^p/(p-1)^(p-1))^n * sqrt(p/(2*Pi*n*(p-1))) * (1 - (p^2-p+1)/(12*n*p*(p-1))).
%C A254157 binomial(p*n,n)^n ~ exp(-(p^2-p+1)/(12*p*(p-1))) * (p^p/(p-1)^(p-1))^(n^2) * (p/(2*Pi*n*(p-1)))^(n/2).
%F A254157 a(n) ~ exp(-7/72) * 3^(3*n^2 + n/2) / (2^(2*n^2 + n) * Pi^(n/2) * n^(n/2)).
%t A254157 Table[Binomial[3n,n]^n,{n,0,10}]
%Y A254157 Cf. A005809, A224733.
%K A254157 nonn,easy
%O A254157 0,2
%A A254157 _Vaclav Kotesovec_, Jan 26 2015