cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254162 Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.

This page as a plain text file.
%I A254162 #6 Jul 23 2025 14:28:51
%S A254162 3036,23660,164684,1014816,6159516,36538548,217539476,1297596948,
%T A254162 7773465716,46667868056,280531517204,1687013713288,10146685732748,
%U A254162 61029056245012,367072960100780,2207831773493064,13279454483043468
%N A254162 Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
%C A254162 Column 2 of A254168
%H A254162 R. H. Hardin, <a href="/A254162/b254162.txt">Table of n, a(n) for n = 1..210</a>
%F A254162 Empirical: a(n) = 9*a(n-1) -15*a(n-2) -35*a(n-3) +120*a(n-4) -94*a(n-5) -141*a(n-6) +965*a(n-7) -263*a(n-8) -13931*a(n-9) +36104*a(n-10) -32494*a(n-11) +2541*a(n-12) +15355*a(n-13) -2033*a(n-14) +9491*a(n-15) -68712*a(n-16) +106622*a(n-17) -75887*a(n-18) +25367*a(n-19) -33645*a(n-20) +72871*a(n-21) -56744*a(n-22) -62522*a(n-23) +205648*a(n-24) -243552*a(n-25) +197908*a(n-26) -168492*a(n-27) +219664*a(n-28) -125816*a(n-29) -184896*a(n-30) +410240*a(n-31) -367264*a(n-32) +183040*a(n-33) -175488*a(n-34) +175744*a(n-35) +44544*a(n-36) -273920*a(n-37) +287232*a(n-38) -115712*a(n-39) +45056*a(n-40) -61440*a(n-41) +8192*a(n-42) +65536*a(n-43) -81920*a(n-44) +32768*a(n-45) for n>53
%e A254162 Some solutions for n=3
%e A254162 ..0..0..1..0....0..1..1..0....0..0..1..1....0..0..1..1....0..0..0..1
%e A254162 ..1..0..1..0....0..1..0..1....1..0..0..0....0..0..1..1....1..1..1..1
%e A254162 ..0..1..0..0....1..0..0..0....1..1..1..1....1..0..0..1....1..0..0..0
%e A254162 ..1..0..0..0....1..0..1..0....1..0..0..1....0..0..0..0....1..1..1..0
%e A254162 ..1..1..0..0....0..0..0..1....0..0..0..1....1..0..0..1....0..0..1..1
%K A254162 nonn
%O A254162 1,1
%A A254162 _R. H. Hardin_, Jan 26 2015