cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254168 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.

This page as a plain text file.
%I A254168 #6 Jul 23 2025 14:29:30
%S A254168 512,3036,3036,16240,23660,16240,76832,164408,164684,76832,348032,
%T A254168 1078032,1553720,1014816,348032,1511152,6831024,15016048,13514192,
%U A254168 6159516,1511152,6440848,41678024,139009432,191190272,119471400,36538548
%N A254168 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
%C A254168 Table starts
%C A254168 .......512........3036.........16240...........76832.............348032
%C A254168 ......3036.......23660........164408.........1078032............6831024
%C A254168 .....16240......164684.......1553720........15016048..........139009432
%C A254168 .....76832.....1014816......13514192.......191190272.........2589374656
%C A254168 ....348032.....6159516.....119471400......2437141776........47722312832
%C A254168 ...1511152....36538548....1054310240.....31143715804.......886761490936
%C A254168 ...6440848...217539476....9378850720....399587109728.....16524431408400
%C A254168 ..27128324..1297596948...83642043104...5135066242396....307997125181376
%C A254168 .113712184..7773465716..747838723984..66055387860800...5746900683155904
%C A254168 .475820928.46667868056.6692350328688.850097997207468.107280164731745488
%H A254168 R. H. Hardin, <a href="/A254168/b254168.txt">Table of n, a(n) for n = 1..335</a>
%F A254168 Empirical for column k:
%F A254168 k=1: [linear recurrence of order 32]
%F A254168 k=2: [order 45] for n>53
%F A254168 k=3: [order 66] for n>71
%F A254168 Empirical for row n:
%F A254168 n=1: [same linear recurrence of order 32]
%F A254168 n=2: [order 47] for n>61
%F A254168 n=3: [order 73] for n>90
%e A254168 Some solutions for n=2 k=4
%e A254168 ..0..1..0..0..1..0....0..0..1..0..1..0....0..1..1..1..1..0....0..1..0..1..1..1
%e A254168 ..1..0..1..1..1..0....1..0..0..1..1..0....1..0..0..1..1..0....1..0..1..0..1..0
%e A254168 ..0..1..0..0..0..1....0..1..0..0..0..0....1..1..0..1..1..0....1..1..0..0..0..0
%e A254168 ..1..0..0..1..1..0....1..1..0..1..1..0....1..1..1..1..1..1....1..1..1..0..1..0
%K A254168 nonn,tabl
%O A254168 1,1
%A A254168 _R. H. Hardin_, Jan 26 2015