cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254204 T(n,k)=Number of length n 1..(k+2) arrays with no leading or trailing partial sum equal to a prime.

This page as a plain text file.
%I A254204 #6 Jul 23 2025 14:32:30
%S A254204 1,2,0,2,1,0,3,1,2,0,3,4,4,6,1,4,4,17,9,11,0,5,11,18,54,21,27,0,6,16,
%T A254204 47,59,176,47,53,1,6,23,68,195,204,610,118,133,0,7,23,119,315,898,769,
%U A254204 2197,333,310,0,7,34,131,676,1653,4353,3098,8358,984,691,1,8,34,226,786,4078
%N A254204 T(n,k)=Number of length n 1..(k+2) arrays with no leading or trailing partial sum equal to a prime.
%C A254204 Table starts
%C A254204 .1...2....2......3......3.......4.......5........6........6.........7.........7
%C A254204 .0...1....1......4......4......11......16.......23.......23........34........34
%C A254204 .0...2....4.....17.....18......47......68......119......131.......226.......237
%C A254204 .0...6....9.....54.....59.....195.....315......676......786......1571......1743
%C A254204 .1..11...21....176....204.....898....1653.....4078.....5075.....11512.....13456
%C A254204 .0..27...47....610....769....4353....9126....25389....33798.....85437....105502
%C A254204 .0..53..118...2197...3098...22189...50166...156454...222665....640886....845325
%C A254204 .1.133..333...8358..14080..112015..266060...972441..1504758...4956259...6973431
%C A254204 .0.310..984..34005..63868..542397.1445197..6288889.10555156..38994996..58337721
%C A254204 .0.691.3362.132483.261240.2658643.8388620.41384162.74476895.308256904.493751257
%H A254204 R. H. Hardin, <a href="/A254204/b254204.txt">Table of n, a(n) for n = 1..264</a>
%e A254204 Some solutions for n=4 k=4
%e A254204 ..4....6....4....4....6....4....1....4....6....6....1....4....6....6....1....6
%e A254204 ..2....4....5....2....6....6....3....6....6....4....5....4....6....6....3....3
%e A254204 ..2....4....3....4....3....5....6....6....3....2....6....4....6....2....2....5
%e A254204 ..6....4....6....4....1....1....6....4....6....4....4....4....4....4....4....4
%Y A254204 Row 1 is A062298(n+2)
%K A254204 nonn,tabl
%O A254204 1,2
%A A254204 _R. H. Hardin_, Jan 26 2015