cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A254197 Number of length n 1..(1+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 2, 14, 66, 156, 202, 151, 69, 18, 7, 19, 37, 78, 393, 2608, 12865, 45917, 121659, 245151, 393062, 565673, 910088, 1775336, 3503048, 5974259, 8372896, 9844151, 11328144, 18364097, 44444934, 112695335, 249504498
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Column 1 of A254204

Examples

			All solutions for n=15
..1....1....1....1....1....1....1....1....1....1....1....1....1....1
..3....3....3....3....3....3....3....3....3....3....3....3....3....3
..2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....2....3....3....3....3....3....3....3....3....2....3....3....3
..3....2....3....1....3....3....3....3....3....3....1....3....3....3
..3....2....3....2....3....3....2....3....3....2....3....3....3....2
..1....3....3....3....3....3....1....3....3....2....3....3....3....2
..2....3....3....3....3....2....3....3....2....2....3....3....3....2
..3....3....3....3....3....1....3....3....2....3....3....1....3....2
..3....3....2....3....3....3....3....2....2....3....3....2....3....2
..3....3....1....3....3....3....3....2....3....3....3....3....1....3
..3....3....3....3....3....3....3....2....3....3....3....3....2....3
..2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....3....3....3....3....3....3....3....3....3....3....3....3
..1....1....1....1....1....1....1....1....1....1....1....1....1....1
		

A254198 Number of length n 1..(2+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

2, 1, 2, 6, 11, 27, 53, 133, 310, 691, 1722, 4898, 13169, 31188, 68247, 151695, 355719, 880650, 2386625, 7052660, 20845775, 57431942, 145661869, 346176887, 792710311, 1828054653, 4509979089, 12381748520, 37284100779, 117101693844, 362950924700
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Column 2 of A254204

Examples

			All solutions for n=4
..4....4....4....4....1....4
..2....4....2....2....3....4
..4....2....3....2....2....4
..4....4....1....4....4....4
		

A254199 Number of length n 1..(3+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

2, 1, 4, 9, 21, 47, 118, 333, 984, 3362, 12643, 39490, 98542, 227138, 581068, 1805114, 6540668, 24406560, 85426548, 274421967, 815755674, 2293410096, 6495970695, 20483223847, 74509476318, 290215121856, 1104108812114, 3894326230239
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Column 3 of A254204

Examples

			All solutions for n=4
..4....1....4....4....1....4....4....4....1
..4....3....2....5....5....4....2....2....3
..2....2....4....5....3....4....2....3....5
..4....4....4....4....1....4....4....1....1
		

A254200 Number of length n 1..(4+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

3, 4, 17, 54, 176, 610, 2197, 8358, 34005, 132483, 481155, 1740425, 6687987, 27786351, 119771265, 505378180, 2029295253, 7853415177, 30644058184, 126228069143, 551346605310, 2456789154285, 10682911165060, 44206259595121
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Column 4 of A254204

Examples

			Some solutions for n=4
..6....4....6....6....4....6....4....4....6....4....4....4....6....6....4....6
..6....6....6....6....4....6....2....4....4....2....2....2....4....4....6....6
..2....2....6....4....2....3....6....4....4....3....2....2....4....6....4....2
..6....4....6....4....4....1....4....6....4....1....4....6....6....4....4....4
		

A254205 Number of length 2 1..(n+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

0, 1, 1, 4, 4, 11, 16, 23, 23, 34, 34, 47, 58, 73, 73, 92, 92, 113, 130, 149, 149, 178, 197, 226, 249, 278, 278, 315, 315, 348, 377, 414, 447, 490, 490, 531, 568, 613, 613, 666, 666, 715, 758, 809, 809, 870, 917, 978, 1029, 1086, 1086, 1155, 1206, 1275, 1330, 1393
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 2 of A254204

Examples

			All solutions for n=4
..6....4....6....4
..4....4....6....6
		

A254206 Number of length 3 1..(n+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

0, 2, 4, 17, 18, 47, 68, 119, 131, 226, 237, 370, 475, 644, 678, 949, 985, 1303, 1544, 1903, 1966, 2511, 2864, 3440, 3890, 4564, 4716, 5658, 5781, 6672, 7421, 8442, 9295, 10640, 10833, 12154, 13274, 14792, 15101, 17017, 17322, 19177, 20728, 22792, 23197
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 3 of A254204

Examples

			Some solutions for n=4
..4....6....6....4....6....6....1....6....6....6....4....4....4....1....6....4
..4....6....2....5....4....3....3....3....2....6....2....4....2....5....4....6
..4....6....6....1....4....1....6....6....4....4....4....6....6....4....6....4
		

A254207 Number of length 4 1..(n+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

0, 6, 9, 54, 59, 195, 315, 676, 786, 1571, 1743, 3055, 4150, 6173, 6771, 10272, 11043, 15676, 19401, 25430, 27112, 36782, 43100, 54658, 63832, 78460, 83191, 105054, 110008, 132262, 150922, 178462, 201003, 239821, 249418, 289635, 323607, 372848
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 4 of A254204

Examples

			Some solutions for n=4
..4....6....1....6....4....4....6....4....4....4....1....6....6....1....6....6
..2....4....3....6....2....4....6....6....2....6....5....3....4....5....2....6
..2....2....5....4....2....4....3....4....4....2....6....3....2....4....4....2
..4....6....1....6....6....4....1....4....6....4....4....6....4....6....4....6
		

A254208 Number of length 5 1..(n+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

1, 11, 21, 176, 204, 898, 1653, 4078, 5075, 11512, 13456, 25925, 37275, 60717, 69689, 114352, 127928, 195039, 251161, 349001, 385157, 552907, 667293, 892038, 1075280, 1385235, 1510110, 2006079, 2156703, 2694466, 3157069, 3885393, 4484057, 5564130
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 5 of A254204

Examples

			Some solutions for n=4
..6....4....4....4....4....6....6....6....4....1....4....4....1....4....4....4
..3....2....6....2....5....3....6....4....6....5....5....6....5....2....6....2
..6....4....4....4....3....3....6....5....5....6....6....6....4....4....6....2
..5....5....2....4....6....2....6....5....6....6....3....6....2....4....5....6
..4....1....4....6....6....4....6....4....4....4....6....6....4....4....1....6
		

A254209 Number of length 6 1..(n+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

0, 27, 47, 610, 769, 4353, 9126, 25389, 33798, 85437, 105502, 224414, 342993, 608338, 731220, 1297874, 1513366, 2471660, 3316174, 4892872, 5594456, 8495902, 10580268, 14864909, 18500679, 24975320, 28034979, 39173178, 43315043, 56273764, 67819100
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 6 of A254204

Examples

			Some solutions for n=4
..4....4....6....6....6....6....6....6....6....6....6....1....4....1....6....6
..4....2....4....6....3....3....4....2....3....4....4....3....4....5....3....6
..2....2....4....4....6....6....6....1....1....4....5....6....6....2....1....4
..4....4....2....6....1....6....5....6....6....6....6....6....4....6....5....4
..6....6....2....4....4....5....5....5....2....2....5....5....6....2....3....4
..6....6....6....6....4....4....4....4....6....6....4....1....6....6....6....6
		

A254210 Number of length 7 1..(n+2) arrays with no leading or trailing partial sum equal to a prime.

Original entry on oeis.org

0, 53, 118, 2197, 3098, 22189, 50166, 156454, 222665, 640886, 845325, 1995830, 3234225, 6187800, 7811859, 15035317, 18326311, 31910349, 44572678, 69639188, 82473044, 132683340, 170881758, 252397169, 325215746, 460488479, 533632442
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 7 of A254204

Examples

			Some solutions for n=4
..6....4....4....6....6....4....4....6....6....6....6....6....4....4....6....4
..4....4....5....4....2....2....4....6....4....2....6....2....6....2....2....2
..2....6....3....6....4....3....6....6....4....2....2....2....6....6....2....2
..4....4....4....4....4....3....6....6....6....2....6....4....5....2....4....1
..4....2....2....4....5....6....4....6....6....2....6....6....1....6....6....1
..6....4....6....4....3....6....2....6....6....4....4....4....2....4....5....4
..4....4....6....4....6....6....4....6....6....4....6....4....6....4....1....4
		
Showing 1-10 of 13 results. Next