This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254218 #6 Apr 20 2015 19:15:40 %S A254218 1,2,0,2,0,0,3,0,1,0,3,2,3,2,1,4,2,11,4,2,0,5,8,12,22,8,2,0,6,12,32, %T A254218 24,56,6,2,0,6,18,48,96,70,136,15,2,0,7,18,86,168,373,192,383,18,5,0, %U A254218 7,28,98,388,766,1472,633,1070,45,4,0,8,28,172,490,2056,3720,6490,2484,3897 %N A254218 T(n,k) = number of length n 1..(k+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal. %C A254218 Table starts %C A254218 .1.2...2.....3.....3......4.......5........6........6.........7.........7 %C A254218 .0.0...0.....2.....2......8......12.......18.......18........28........28 %C A254218 .0.1...3....11....12.....32......48.......86.......98.......172.......183 %C A254218 .0.2...4....22....24.....96.....168......388......490......1024......1168 %C A254218 .1.2...8....56....70....373.....766.....2056.....2803......6705......8187 %C A254218 .0.2...6...136...192...1472....3720....11182....16698.....44652.....58174 %C A254218 .0.2..15...383...633...6490...18214....60168....97089....296955....420163 %C A254218 .0.2..18..1070..2484..28190...81428...316982...574274...2056696...3150280 %C A254218 .0.5..45..3897.10554.109811..362910..1788533..3605385..14593061..23955140 %C A254218 .0.4.118.13372.35054.428042.1828848.10469104.22736838.103347086.183929058 %H A254218 R. H. Hardin, <a href="/A254218/b254218.txt">Table of n, a(n) for n = 1..265</a> %e A254218 Some solutions for n=4 k=4 %e A254218 ..4....4....4....1....1....1....1....6....6....6....1....6....4....4....4....6 %e A254218 ..6....2....2....3....5....5....5....3....3....4....5....2....2....5....6....4 %e A254218 ..4....4....3....2....6....3....4....5....5....2....3....4....6....3....2....2 %e A254218 ..6....6....1....4....4....6....6....1....4....4....1....6....4....6....4....6 %Y A254218 Row 1 is A062298(n+2). %Y A254218 Column k=1 gives A254211. %K A254218 nonn,tabl %O A254218 1,2 %A A254218 _R. H. Hardin_, Jan 26 2015