cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254284 Indices of centered triangular numbers (A005448) which are also hexagonal numbers (A000384).

This page as a plain text file.
%I A254284 #8 Nov 11 2020 12:14:35
%S A254284 1,36,133,6888,25705,1336140,4986541,259204176,967363153,50284273908,
%T A254284 187663465045,9754889933880,36405744855481,1892398362898716,
%U A254284 7062526838498173,367115527512416928,1370093800923789985,71218519939045985220,265791134852376758821
%N A254284 Indices of centered triangular numbers (A005448) which are also hexagonal numbers (A000384).
%C A254284 Also positive integers y in the solutions to 4*x^2 - 3*y^2 - 2*x + 3*y - 2 = 0, the corresponding values of x being A254283.
%H A254284 Colin Barker, <a href="/A254284/b254284.txt">Table of n, a(n) for n = 1..875</a>
%H A254284 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,194,-194,-1,1).
%F A254284 a(n) = a(n-1)+194*a(n-2)-194*a(n-3)-a(n-4)+a(n-5).
%F A254284 G.f.: x*(35*x^3+97*x^2-35*x-1) / ((x-1)*(x^2-14*x+1)*(x^2+14*x+1)).
%e A254284 36 is in the sequence because the 36th centered triangular number is 1891, which is also the 31st hexagonal number.
%t A254284 LinearRecurrence[{1,194,-194,-1,1},{1,36,133,6888,25705},20] (* _Harvey P. Dale_, Nov 11 2020 *)
%o A254284 (PARI) Vec(x*(35*x^3+97*x^2-35*x-1)/((x-1)*(x^2-14*x+1)*(x^2+14*x+1)) + O(x^100))
%Y A254284 Cf. A000384, A005448, A254283, A254285.
%K A254284 nonn,easy
%O A254284 1,2
%A A254284 _Colin Barker_, Jan 28 2015