This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254288 #24 Sep 08 2022 08:46:11 %S A254288 1,370,41425,81535,255625,267175,311590,365350,1054570,1381750, %T A254288 2533600,2975125,3266080,3930205,4684210,4782385,4802860,5940850, %U A254288 6414610,7986565,8429245,8570470,8636305,8810080,9270715,9857980,10459525,13708225,13917490,15127720,15252460 %N A254288 Numbers k such that 4*k + {1, 3, 7, 9, 13, 19} are all prime. %C A254288 All terms in this sequence are congruent to 1 mod 3. %C A254288 Subsequence of A123986. %H A254288 Robert G. Wilson v, <a href="/A254288/b254288.txt">Table of n, a(n) for n = 1..1000</a> (first 726 terms from K. D. Bajpai) %e A254288 a(2) = 370; %e A254288 4*370 + 1 = 1481; %e A254288 4*370 + 3 = 1483; %e A254288 4*370 + 7 = 1487; %e A254288 4*370 + 9 = 1489; %e A254288 4*370 + 13 = 1493; %e A254288 4*370 + 19 = 1499; %e A254288 All six are prime. %t A254288 Select[Range[5*10^7], PrimeQ[4*# + 1] && PrimeQ[4*# + 3] && PrimeQ[4*# + 7] && PrimeQ[4*# + 9] && PrimeQ[4*# + 13] && PrimeQ[4*# + 19] &] %t A254288 Select[Range[5*10^6], And @@ PrimeQ /@ ({1, 3, 7, 9, 13, 19} + 4 #) &] %o A254288 (PARI) for(n=1,10^7, if( isprime(4*n + 1) && isprime(4*n + 3) &&isprime(4*n + 7) &&isprime(4*n + 9) &&isprime(4*n + 13) &&isprime(4*n + 19) , print1(n,", "))) %o A254288 (Magma) [n: n in [0..10^8] | forall{4*n+i: i in [1, 3, 7, 9, 13, 19] | IsPrime(4*n+i)}]; // _Vincenzo Librandi_, Mar 12 2015 %Y A254288 Cf. A000040, A005098, A095278, A123986. %K A254288 nonn %O A254288 1,2 %A A254288 _K. D. Bajpai_, Jan 27 2015