cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254307 Least k such that there are n positive integers, all less than or equal to k, such that the sum of the reciprocals of their squares equals 1.

Original entry on oeis.org

6, 4, 6, 3, 4, 6, 6, 4, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 8, 6, 6, 8, 6, 8, 8, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 9, 8, 8, 9, 8, 8, 9, 9, 8, 9, 9, 8, 9, 9, 9, 9, 10, 9, 9, 10, 9, 10, 10, 9
Offset: 6

Views

Author

Keywords

Comments

a(2), a(3), and a(5) are undefined, so this sequence starts at offset 6. Gasarch (2015) shows that a(n) exists for all n >= 6, though this was known (folklore?) previously; he also poses three open questions.
First occurrence of n: 1, 4, 9, 7, 25, 6, 49, 29, 53, 69, 121, 87, 140, 179, 221, ..., . - Robert G. Wilson v, Feb 15 2015

Examples

			a(1) = 1: 1 = 1/1.
a(4) = 2: 1 = 1/4 + 1/4 +1/4 + 1/4.
a(6) = 6: 1 = 1/4 + 1/4 + 1/4 + 1/9 + 1/9 + 1/36.
a(7) = 4: 1 = 1/4 + 1/4 + 1/4 + 1/16 + 1/16 + 1/16 + 1/16.
a(8) = 6: 1 = 1/4 + 1/4 + 1/9 + 1/9 + 1/9 + 1/9 + 1/36 + 1/36.
a(9) = 3: 1 = 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9.
		

Crossrefs

Programs

  • PARI
    /* oo = 10^10; \\ uncomment for earlier pari versions */
    ssd(n,total,mn,mx)=my(t,best=oo); if(total<=0,return(0)); if(n==1, return(if(issquare(1/total,&t)&&t>=mn&&t<=mx&&denominator(t)==1,t,0))); for(k=mn, min(sqrtint(n\total),mx), t=ssd(n-1,total-1/k^2,k,mx); if(t,best=min(best,t))); best
    a(n)=my(k=sqrtint(n-1),t=oo);while(t==oo,k++;t=ssd(n-1,1-1/k^2,2,k));k

Formula

sqrt(n) <= a(n) < 2*sqrt(n) for n > 8. The lower bound is sharp since a(n^2) = n.