A254307 Least k such that there are n positive integers, all less than or equal to k, such that the sum of the reciprocals of their squares equals 1.
6, 4, 6, 3, 4, 6, 6, 4, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 8, 6, 6, 8, 6, 8, 8, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 9, 8, 8, 9, 8, 8, 9, 9, 8, 9, 9, 8, 9, 9, 9, 9, 10, 9, 9, 10, 9, 10, 10, 9
Offset: 6
Keywords
Examples
a(1) = 1: 1 = 1/1. a(4) = 2: 1 = 1/4 + 1/4 +1/4 + 1/4. a(6) = 6: 1 = 1/4 + 1/4 + 1/4 + 1/9 + 1/9 + 1/36. a(7) = 4: 1 = 1/4 + 1/4 + 1/4 + 1/16 + 1/16 + 1/16 + 1/16. a(8) = 6: 1 = 1/4 + 1/4 + 1/9 + 1/9 + 1/9 + 1/9 + 1/36 + 1/36. a(9) = 3: 1 = 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9.
Links
- Bill Gasarch, The Solution to a problem in a Romanian math problem book (2015)
Programs
-
PARI
/* oo = 10^10; \\ uncomment for earlier pari versions */ ssd(n,total,mn,mx)=my(t,best=oo); if(total<=0,return(0)); if(n==1, return(if(issquare(1/total,&t)&&t>=mn&&t<=mx&&denominator(t)==1,t,0))); for(k=mn, min(sqrtint(n\total),mx), t=ssd(n-1,total-1/k^2,k,mx); if(t,best=min(best,t))); best a(n)=my(k=sqrtint(n-1),t=oo);while(t==oo,k++;t=ssd(n-1,1-1/k^2,2,k));k
Formula
sqrt(n) <= a(n) < 2*sqrt(n) for n > 8. The lower bound is sharp since a(n^2) = n.
Comments