This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254317 #23 Nov 16 2017 15:52:25 %S A254317 1,6,26,102,510,3210,22890,153690,1507290,15618090 %N A254317 a(n) is the least number k such that the number of distinct digits in the prime factorization of k is n (counting terms of the form p^1 as p). %C A254317 Write k as product of primes raised to powers; then a(n) is the least number k such that the total number of distinct digits in the product representation of k (number of distinct digits in all the primes and number of distinct digits in all the exponents that are greater than 1) is equal to n. The first term a(1)= 1 by convention. The sequence is complete. %C A254317 Property: all exponents are equal to 1 (see the examples below). %e A254317 a(1) = 1; %e A254317 a(2) = 6 = 2*3 and A254315(6) = 2; %e A254317 a(3) = 26 = 2*13 and A254315(26) = 3; %e A254317 a(4) = 102 = 2*3*17 and A254315(102) = 4; %e A254317 a(5) = 510 = 2*3*5*17 and A254315(510) = 5; %e A254317 a(6) = 3210 = 2*3*5*107 and A254315(3210) = 6; %e A254317 a(7) = 22890 = 2*3*5*7*109 and A254315(22890) = 7; %e A254317 a(8) = 153690 = 2*3*5*47*109 and A254315(153690) = 8; %e A254317 a(9) = 1507290 = 2*3*5*47*1069 and A254315(1507290) = 9; %e A254317 a(10) = 15618090 = 2*3*5*487*1069 and A254315(15618090) = 10. %p A254317 with(ListTools): %p A254317 for n from 2 to 10 do: %p A254317 ii:=0: %p A254317 for k from 2 to 10^9 while(ii=0)do: %p A254317 n0:=length(k):lst:={}:x0:=ifactors(k): %p A254317 y:=Flatten(x0[2]):z:=convert(y,set): %p A254317 z1:=z minus {1}:nn0:=nops(z1): %p A254317 for m from 1 to nn0 do : %p A254317 t1:=convert(z1[m],base,10):z2:=convert(t1,set): %p A254317 lst:=lst union z2: %p A254317 od: %p A254317 nn1:=nops(lst): %p A254317 if nn1=n then ii:=1:printf ( "%d %d \n",n,k): %p A254317 else %p A254317 fi: %p A254317 od : %p A254317 od: %t A254317 f[n_] := Block[{pf = FactorInteger@ n, i}, Length@ DeleteDuplicates@ Flatten@ IntegerDigits@ Rest@ Flatten@ Reap@ Do[If[Last[pf[[i]]] == 1, Sow@ First@ pf[[i]], Sow@ FromDigits@ Flatten[IntegerDigits /@ pf[[i]]]], {i, Length@ pf}]]; b = -1; Flatten@ Last@ Reap@ Do[a = f[n]; If[a > b, Sow[n]; b = a], {n, 10^6}] (* _Michael De Vlieger_, Jan 29 2015 *) %t A254317 With[{s = Array[CountDistinct@ Flatten@ IntegerDigits[FactorInteger[#] /. {p_, e_} /; e == 1 :> {p}] &, 10^6]}, Map[FirstPosition[s, #][[1]] &, Range@ Max@ s]] (* _Michael De Vlieger_, Nov 03 2017 *) %o A254317 (PARI) a(n)=for(k=1,10^5,s=[];F=factor(k);for(i=1,#F[,1],s=concat(s,digits(F[i,1]));if(F[i,2]>1,s=concat(s,digits(F[i,2]))));if(#vecsort(s,,8)==n,return(k))) %o A254317 print1(1,", ");for(n=2,7,print1(a(n),", ")) \\ _Derek Orr_, Jan 30 2015 %Y A254317 Cf. A043537, A254315. %K A254317 nonn,base,fini,full %O A254317 1,2 %A A254317 _Michel Lagneau_, Jan 28 2015 %E A254317 a(10) corrected by _Giovanni Resta_, Nov 03 2017