cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254332 Indices of centered pentagonal numbers (A005891) which are also squares (A000290).

This page as a plain text file.
%I A254332 #19 Jul 06 2024 09:23:29
%S A254332 1,3,22,96,817,3627,31006,137712,1177393,5229411,44709910,198579888,
%T A254332 1697799169,7540806315,64471658494,286352060064,2448225223585,
%U A254332 10873837476099,92968086837718,412919472031680,3530339074609681,15680066099727723,134059916748330142
%N A254332 Indices of centered pentagonal numbers (A005891) which are also squares (A000290).
%C A254332 Also positive integers y in the solutions to 2*x^2 - 5*y^2 + 5*y - 2 = 0, the corresponding values of x being A129557.
%H A254332 Colin Barker, <a href="/A254332/b254332.txt">Table of n, a(n) for n = 1..1000</a>
%H A254332 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,38,-38,-1,1).
%F A254332 a(n) = a(n-1) + 38*a(n-2) - 38*a(n-3) - a(n-4) + a(n-5).
%F A254332 G.f.: x*(2*x^3 + 19*x^2 - 2*x - 1) / ((x-1)*(x^2 - 6*x - 1)*(x^2 + 6*x - 1)).
%F A254332 a(n) = (1/40)*(20 - b^n*(19 + 3*b) + (3 + b)*c^n - (b^n*(3 + b) + (1 - 3*b)*c^n)*(-1)^n) with b = sqrt(10) - 3 and c = sqrt(10) + 3. - _Alan Michael Gómez Calderón_, Jul 02 2024
%e A254332 3 is in the sequence because the 3rd centered pentagonal number is 16, which is also the 4th square number.
%t A254332 LinearRecurrence[{1,38,-38,-1,1},{1,3,22,96,817},30] (* _Harvey P. Dale_, Mar 27 2017 *)
%o A254332 (PARI) Vec(x*(2*x^3+19*x^2-2*x-1) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)) + O(x^100))
%Y A254332 Cf. A000290, A005891, A129557, A254333.
%K A254332 nonn,easy
%O A254332 1,2
%A A254332 _Colin Barker_, Jan 28 2015