This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254340 #29 Sep 08 2022 08:46:11 %S A254340 2,5,7,7,11,12,15,11,13,18,23,18,27,24,24,19,35,24,39,28,32,36,47,30, %T A254340 31,42,31,38,59,41,63,35,48,54,48,42,75,60,56,48,83,55,87,58,54,72,95, %U A254340 54,57,58,72,68,107,60,72,66,80,90,119,71,123,96,74,67,84 %N A254340 Sum of the distinct prime factors of n plus n+1: a(n) = A008472(n) + n + 1. %C A254340 If n is prime, then a(n) = 2n+1; thus if n is a Sophie Germain prime p, then a(p) gives the safe prime q=2p+1. %C A254340 If n is semiprime, then a(n) = sigma(n). %C A254340 If m and n are coprime, then a(m*n) = a(m) + a(n) + (m-1)*(n-1) - 2. - _Robert Israel_, May 04 2015 %F A254340 a(n) = A075653(n) + 1 = A074372(n) + n. [_Bruno Berselli_, May 27 2015] %p A254340 map(t -> t+1+convert(numtheory:-factorset(t),`+`),[$1..100]); # _Robert Israel_, May 04 2015 %t A254340 Table[n + 1 + DivisorSum[n, # &, PrimeQ[#] &], {n, 100}] %o A254340 (PARI) vector(100,n,vecsum(factor(n)[,1]~)+n+1) \\ _Derek Orr_, May 13 2015 %o A254340 (Magma) [&+PrimeDivisors(n)+n+1: n in [1..70]]; // _Bruno Berselli_, May 27 2015 %Y A254340 Cf. A000203 (sigma), A008472 (sopf), A074372, A075653. %Y A254340 Cf. A005384 (Sophie Germain primes), A005385 (safe primes). %K A254340 nonn,easy %O A254340 1,1 %A A254340 _Wesley Ivan Hurt_, May 03 2015