A254438 Natural numbers k such that k is a multiple of its number of "feasible" partitions.
1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 28, 30, 33, 36, 38, 39, 40, 72, 92, 110, 114, 116, 118, 119, 120, 121, 330, 350, 355, 357, 360, 362, 363, 364, 1086, 1088, 1090, 1091, 1092, 1093, 3248, 3270, 3273, 3276, 3278, 3279, 3280, 9792, 9828, 9830, 9834, 9836, 9838, 9839, 9840, 9841, 29376, 29512, 29515, 29517, 29520, 29522, 29523, 29524
Offset: 1
Keywords
Examples
For n=1,2,3, A254296(n)=1, so they are in the sequence. For n=4,6,8,10, A254296(n)=2, so they are in the sequence. For n=5,9, A254296(n)=2, so they are not in the sequence.
Links
- Md Towhidul Islam & Md Shahidul Islam, Number of Partitions of an n-kilogram Stone into Minimum Number of Weights to Weigh All Integral Weights from 1 to n kg(s) on a Two-pan Balance, arXiv:1502.07730 [math.CO], 2015.
Crossrefs
Programs
-
Mathematica
(* This program is not suitable to compute a large number of terms. *) okQ[v_] := Module[{s=0}, For[i=1, i <= Length[v], i++, If[v[[i]] > 2s+1, Return[False], s += v[[i]]]]; Return[True]]; b[n_] := b[n] = With[{k = Ceiling[Log[3, 2 n]]}, Select[Reverse /@ IntegerPartitions[n, {k}], okQ] // Length]; Reap[Do[If[Divisible[k, b[k]], Print[k]; Sow[k]], {k, 1, 120}]][[2, 1]] (* Jean-François Alcover, Nov 03 2018 *)
Extensions
a(48)-a(64) added by Md. Towhidul Islam, Apr 18 2015
Comments