A254439 Median of terms of A254296 in the range (3^(n-1)+1)/2 to (3^n-1)/2.
1, 1, 2, 7, 47, 682, 23132, 1913821, 397731998, 212521309666, 297464368728296
Offset: 1
Examples
As described in sequence A254296, "feasible" partitions of the integers 41 through 121 consist of 5 parts. The number 3^(5-1) = 81 has 47 "feasible" partitions, which is the median of the range from the 41st to the 121st term of A254296.
Links
- Md Towhidul Islam & Md Shahidul Islam, Number of Partitions of an n-kilogram Stone into Minimum Number of Weights to Weigh All Integral Weights from 1 to n kg(s) on a Two-pan Balance, arXiv:1502.07730 [math.CO], 2015.
Crossrefs
Programs
-
C
/* C Code to make Mathematica Code for conjectured n-th term n>3 */ #include
int main(int argc, char* argv[]){ int i, n=atoi(argv[1])-3; printf("F[a_,x_,k_]:=Sum[x,{a,1,k}]\n"); for(i=1; i<=n; i++)printf("F[i%d,",i); printf("3i%d-1,",n); for(i=n-1; i>0; i--)printf("3i%d-1],",i); printf("2]\n"); return 0; } /* Benedict Irwin, Nov 16 2016 */ -
Mathematica
F[a_, x_, k_] := Sum[x, {a, 1, k}] F[i1, 3*i1 - 1, 2] F[i1, F[i2, 3*i2 - 1, 3*i1 - 1], 2] F[i1, F[i2, F[i3, 3*i3 - 1, 3*i2 - 1], 3*i1 - 1], 2] F[i1, F[i2, F[i3, F[i4, 3*i4 - 1, 3*i3 - 1], 3*i2 - 1], 3*i1 - 1], 2] (* Examples of how to get first few terms, use the C code to generate the n-th term of the conjectured formula, Benedict W. J. Irwin, Nov 16 2016 *)
Formula
a(n) = A254296(3^(n-1)).
Conjecture: for n>3, a(n+3) = Sum_{i_1=1..2} Sum_{i_2=1..3*i_1-1} ... Sum_{i_n..3*i_(n-1)-1} (3*i_n - 1). - Benedict W. J. Irwin, Nov 16 2016
Comments