This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254441 #45 May 31 2024 22:11:19 %S A254441 2,3,6,20,26,38,51,119,155,218,446,486,1211,1319,1338,1365,1575,5106, %T A254441 7019,9503,9695,14304,15417,17765,24222,25500,26306,35238,93207 %N A254441 Numbers k such that (41*10^k + 49)/9 is prime. %C A254441 For terms k > 1, numbers that begin with the digit 4 followed by k-2 occurrences of the digit 5 followed by the digits 61 are prime (see Example section). %C A254441 a(30) > 2*10^5. %H A254441 Alois P. Heinz, <a href="/A254441/b254441.txt">Table of n, a(n) for n = 1..29</a> %H A254441 Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>. %H A254441 Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 45w61</a>. %e A254441 3 is in this sequence because (41*10^3 + 49)/9 = 4561 is prime. %e A254441 Initial terms and associated primes: %e A254441 a(1) = 2, 461; %e A254441 a(2) = 3, 4561; %e A254441 a(3) = 6, 4555561; %e A254441 a(4) = 20, 455555555555555555561; %e A254441 a(5) = 26, 455555555555555555555555561, etc. %t A254441 Select[Range[0, 100000], PrimeQ[(41*10^# + 49)/9] &] %o A254441 (PARI) is(n)=ispseudoprime((41*10^n + 49)/9) \\ _Charles R Greathouse IV_, Jun 13 2017 %Y A254441 Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269. %K A254441 nonn,more %O A254441 1,1 %A A254441 _Robert Price_, Apr 17 2016