This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254449 #44 Mar 21 2019 02:40:11 %S A254449 0,4,21,63,117,375,1325,1253,5741,30455,83393,68094,565882,2666148, %T A254449 1514639 %N A254449 a(n) is the smallest nonnegative integer such that a(n)! contains a string of exactly n consecutive 4's. %C A254449 a(6) and a(7) are anagrams. %e A254449 a(1) = 4 since 4! = 24 contains '4', and 4 is the smallest integer for which this condition is met. %e A254449 a(2) = 21 since 21! = 51090942171709440000 contains '44'. %t A254449 A254449[n_] := Module[{m = 0}, %t A254449 t = Table[4, n]; %t A254449 While[! MemberQ[Split[IntegerDigits[m!]], t], m++]; m]; %t A254449 Join[{0}, Table[A254449[n], {n, 1, 14}]] (* _Robert Price_, Mar 20 2019 *) %o A254449 (Python) %o A254449 def A254449(n): %o A254449 if n == 0: %o A254449 return 0 %o A254449 i, m, s = 1, 1, '4'*n %o A254449 s2 = s+'4' %o A254449 while True: %o A254449 m *= i %o A254449 sn = str(m) %o A254449 if s in sn and s2 not in sn: %o A254449 return i %o A254449 i += 1 # _Chai Wah Wu_, Dec 29 2015 %Y A254449 Cf. A254042, A254447, A254448, A254500, A254501, A254502, A254716, A254717, A252652. %K A254449 nonn,more,base %O A254449 0,2 %A A254449 _Martin Y. Champel_, Jan 30 2015 %E A254449 a(12) from _Jon E. Schoenfield_, Feb 27 2015 %E A254449 a(0) prepended by _Jon E. Schoenfield_, Mar 01 2015 %E A254449 a(14) by _Lars Blomberg_, Mar 19 2015 %E A254449 a(13) by _Bert Dobbelaere_, Oct 29 2018