A254451 Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally and vertically.
3036, 26380, 196684, 1279568, 8004340, 48345120, 289945200, 1735438880, 10399188560, 62416180384, 375009286716, 2254540612636, 13558023603848, 81542178909476, 490442432067776, 2949842103362336, 17742389731217108
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..1..1....0..0..1..0....0..0..1..1....0..1..0..1....0..0..1..0 ..0..0..0..0....1..1..1..1....0..0..1..0....0..1..0..0....0..0..0..0 ..1..0..0..0....1..0..0..0....1..1..1..1....1..0..0..0....0..0..0..0 ..0..1..0..1....1..0..1..0....0..0..0..1....0..0..1..0....1..0..0..1 ..1..0..0..1....1..0..0..0....1..0..1..0....0..0..1..1....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 9*a(n-1) -14*a(n-2) -44*a(n-3) +135*a(n-4) -59*a(n-5) -261*a(n-6) +1059*a(n-7) -122*a(n-8) -14896*a(n-9) +36367*a(n-10) -18563*a(n-11) -33563*a(n-12) +47849*a(n-13) -4574*a(n-14) -5864*a(n-15) -66679*a(n-16) +97131*a(n-17) -7175*a(n-18) -81255*a(n-19) +42242*a(n-20) +47504*a(n-21) -23099*a(n-22) -135393*a(n-23) +262392*a(n-24) -181030*a(n-25) -7740*a(n-26) +75060*a(n-27) +21756*a(n-28) +42676*a(n-29) -404560*a(n-30) +536056*a(n-31) -182368*a(n-32) -227200*a(n-33) +191776*a(n-34) -7296*a(n-35) +220032*a(n-36) -449664*a(n-37) +242688*a(n-38) +158208*a(n-39) -242176*a(n-40) +54272*a(n-41) -36864*a(n-42) +126976*a(n-43) -90112*a(n-44) -32768*a(n-45) +81920*a(n-46) -32768*a(n-47) for n>61
Comments