A254500 a(n) is the smallest nonnegative integer such that a(n)! contains a string of exactly n consecutive 5's.
0, 7, 17, 70, 111, 258, 689, 454, 7133, 15977, 82869, 111044, 536687, 384769, 2750561, 7063105
Offset: 0
Examples
a(1) = 7 as 7! equals 5040, which contains '5' and 5 is the smallest integer for which the condition is met.
Programs
-
Mathematica
A254450[n_] := Module[{m = 0}, If[n == 0, While[MemberQ[IntegerDigits[m!], 5], m++]; m, t = Table[5, n]; While[! MemberQ[Split[IntegerDigits[m!]], t], m++]; m]]; Table[A254450[n], {n, 0, 13}] (* Robert Price, Mar 21 2019 *)
Extensions
a(12)-a(13) from Jon E. Schoenfield, Feb 27 2015
a(0) prepended by Jon E. Schoenfield, Mar 01 2015
a(14)-a(15) from Bert Dobbelaere, Oct 29 2018
Comments