This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254522 #41 Apr 04 2017 03:19:42 %S A254522 0,1,1,2,3,16,9,16,85,256,93,512,315,4096,5461,2048,3855,65536,13797, %T A254522 131072,349525,1048576,182361,1048576,3355443,16777216,22369621, %U A254522 33554432,9256395,268435456,34636833,67108864,1431655765,4294967296,17179869183,8589934592,1857283155,68719476736,91625968981 %N A254522 Numerators of (2^n - 1 + (-1)^n)/(2*n), n > 0. %C A254522 An autosequence of the first kind is a sequence which main diagonal is A000004. %C A254522 Difference table of a(n)/A093803(n): %C A254522 0, 1, 1, 2, 3, 16/3, ... %C A254522 1, 0, 1, 1, 7/3, 11/3, ... %C A254522 -1, 1, 0, 4/3, 4/3, 10/3, ... %C A254522 2, -1, 4/3, 0, 2, 2, ... %C A254522 -3, 7/3, -4/3, 2, 0, 16/5, ... %C A254522 16/3, -11/3, 10/3, -2, 16/5, 0, ... %C A254522 etc. %C A254522 This is an autosequence of the first kind. %C A254522 Its first (or second) upper diagonal is A075101(n)/(2*A000265(n)). %C A254522 From _Robert Israel_, Apr 03 2017: (Start) %C A254522 If p is a prime == 5 (mod 8), then a(5*p) = (2^(5*p-1)-1)/5 and a(5*p+3) = 2^(5*p) = 10*a(5*p)+2. This explains pairs such as %C A254522 a(25) = 3355443 %C A254522 a(28) = 33554432 %C A254522 and %C A254522 a(65) = 3689348814741910323 %C A254522 a(68) = 36893488147419103232. (End) %H A254522 Robert Israel, <a href="/A254522/b254522.txt">Table of n, a(n) for n = 1..3321</a> %p A254522 seq(numer((2^n-1+(-1)^n)/(2*n)), n=1..50); # _Robert Israel_, Feb 01 2015 %t A254522 Table[Numerator[(2^n - 1 + (-1)^n)/(2*n)], {n, 39}] (* _Michael De Vlieger_, Feb 01 2015 *) %Y A254522 Cf. A000004, A075101, A093803, A099430. %K A254522 nonn %O A254522 1,4 %A A254522 _Paul Curtz_, Jan 31 2015 %E A254522 a(25) corrected by _Robert Israel_, Apr 03 2017