cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254531 a(n) is the position of the piano key whose frequency is closest to n Hz, start with A0 = the 1st key.

This page as a plain text file.
%I A254531 #17 Oct 14 2019 11:51:51
%S A254531 1,1,2,3,3,4,4,5,5,6,6,7,7,7,8,8,9,9,10,10,10,11,11,11,12,12,12,13,13,
%T A254531 13,14,14,14,15,15,15,15,16,16,16,16,17,17,17,17,18,18,18,18,19,19,19,
%U A254531 19,19,20,20,20,20,21,21,21,21,21,22,22,22,22,22,22
%N A254531 a(n) is the position of the piano key whose frequency is closest to n Hz, start with A0 = the 1st key.
%H A254531 Reinhard Zumkeller, <a href="/A254531/b254531.txt">Table of n, a(n) for n = 27..4308</a>
%H A254531 Wikipedia, <a href="http://en.wikipedia.org/wiki/Piano_key_frequencies">Piano Key Frequencies</a>
%H A254531 Wikipedia, <a href="http://en.wikipedia.org/wiki/Twelfth_root_of_two">Twelfth root of two</a>
%H A254531 <a href="/index/Mu#music">Index entries for sequences based on music</a>
%F A254531 a(n) = round(12*log_2(n/440)) + 49, 27 <= n <= 4308.
%F A254531 a(A214832(k)) = k for k = 1..88.
%e A254531 .     | Frequency [Hz] | Piano key | Pitch
%e A254531 .   i | f = A079731(i) |      a(f) |
%e A254531 .  ---+----------------+-----------+------
%e A254531 .   0 |             28 |         1 |  A0
%e A254531 .   1 |             55 |        13 |  A1
%e A254531 .   2 |            110 |        25 |  A2
%e A254531 .   3 |            220 |        37 |  A3
%e A254531 .   4 |            440 |        49 |  A4    A440
%e A254531 .   5 |            880 |        61 |  A5
%e A254531 .   6 |           1760 |        73 |  A6
%e A254531 .   7 |           3520 |        85 |  A7 .
%o A254531 (Haskell)
%o A254531 a254531 = (+ 49) . round . (* 12) . logBase 2 . (/ 440) . fromIntegral
%o A254531 (PARI) a(n) = round(12*log(n/440)/log(2))+49 \\ _Jianing Song_, Oct 14 2019
%Y A254531 Cf. A214832, A079731, A010774.
%K A254531 nonn,fini,full
%O A254531 27,3
%A A254531 _Reinhard Zumkeller_, Feb 01 2015
%E A254531 Corrected by _Jianing Song_, Oct 14 2019