cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254573 Number of ways to write n = x*(x+1) + y*(3*y+1)/2 + z*(3*z-1)/2 with x,y,z nonnegative integers.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 1, 4, 2, 3, 1, 1, 3, 3, 5, 2, 2, 2, 3, 3, 4, 3, 4, 1, 4, 2, 4, 5, 4, 3, 2, 4, 5, 4, 2, 4, 2, 6, 3, 5, 3, 3, 6, 5, 5, 3, 3, 6, 2, 6, 5, 3, 4, 3, 6, 2, 4, 9, 6, 4, 4, 5, 5, 5, 7, 3, 2, 3, 8, 4, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 01 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n. Also, a(n) = 1 only for n = 0, 1, 4, 6, 10, 11, 23.
This has been verified for all n = 0..10^7. We have proved that every nonnegative integer can be written as x*(x+1) + y*(3*y+1)/2 + z*(3*z-1)/2 with x,y,z integers.

Examples

			a(10) = 1 since 10 = 1*2 + 2*(3*2+1)/2 + 1*(3*1-1)/2.
a(11) = 1 since 11 = 2*3 + 0*(3*0+1)/2 + 2*(3*2-1)/2.
a(23) = 1 since 23 = 4*5 + 1*(3*1+1)/2 + 1*(3*1-1)/2.
a(34) = 2 since 34 = 3*4 + 0*(3*0+1)/2 + 4*(3*4-1)/2 = 4*5 + 1*(3*1+1)/2 + 3*(3*3-1)/2.
		

Crossrefs

Programs

  • Mathematica
    sQ[n_]:=IntegerQ[Sqrt[4n+1]]
    Do[r=0;Do[If[sQ[n-y(3y+1)/2-z(3z-1)/2],r=r+1],{y,0,(Sqrt[24n+1]-1)/6},{z,0,(Sqrt[24(n-y(3y+1)/2)+1]+1)/6}];
    Print[n," ",r];Continue,{n,0,70}]