A254574 Number of ways to write n = x*(x+1)/2 + y*(3*y+1)/2 + z*(3*z-1)/2 with x,y,z nonnegative integers.
1, 2, 2, 3, 2, 2, 3, 3, 5, 2, 3, 3, 3, 5, 2, 6, 3, 5, 5, 2, 4, 3, 8, 4, 3, 4, 4, 6, 6, 6, 7, 3, 4, 5, 3, 6, 5, 8, 5, 4, 6, 8, 5, 8, 5, 5, 4, 6, 10, 1, 7, 6, 10, 5, 4, 7, 6, 7, 9, 6, 6, 6, 8, 10, 4, 7, 5, 9, 7, 7, 4
Offset: 0
Keywords
Examples
a(14) = 2 since 14 = 0*1/2 + 1*(3*1+1)/2 + 3*(3*3-1)/2 = 3*4/2 + 2*(3*2+1)/2 + 1*(3*1-1)/2. a(49) = 1 since 49 = 1*2/2 + 4*(3*4+1)/2 + 4*(3*4-1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
Programs
-
Mathematica
TQ[n_]:=IntegerQ[Sqrt[8n+1]] Do[r=0;Do[If[TQ[n-y(3y+1)/2-z(3z-1)/2],r=r+1],{y,0,(Sqrt[24n+1]-1)/6},{z,0,(Sqrt[24(n-y(3y+1)/2)+1]+1)/6}]; Print[n," ",r];Continue,{n,0,70}]
Comments