This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254575 #43 Feb 06 2023 06:49:42 %S A254575 1,1,2,-1,-2,1,2,-1,-2,3,2,1,-2,-1,-3,1,2,-1,-2,3,4,-3,-4,2,1,-2,-1,4, %T A254575 3,-4,-3,1,2,-1,-2,3,2,1,-2,-1,-3,4,5,-4,-5,3,1,2,-1,-2,-3,2,1,-2,-1, %U A254575 5,4,-5,-4,1,2,-1,-2,3,2,1,-2,-1,-3,4,5,-4,-5,6,5 %N A254575 Triangle T(n,k) in which the n-th row encodes how to hang a picture by wrapping rope around n nails using a polynomial number of twists, such that removing one nail causes the picture to fall; n>=1, 1<=k<=A073121(n). %C A254575 In step k the rope has to be wrapped around nail |T(n,k)| clockwise if T(n,k)>0 and counterclockwise if T(n,k)<0. %C A254575 1 or (-1) appears A062383(n-1) times in row n. %C A254575 n or (-n) appears A053644(n) times in row n. %H A254575 Alois P. Heinz, <a href="/A254575/b254575.txt">Rows n = 1..30, flattened</a> %H A254575 E. D. Demaine, M. L. Demaine, Y. N. Minsky, J. S. B. Mitchell, R. L. Rivest, M. Patrascu, <a href="https://arxiv.org/abs/1203.3602">Picture-Hanging Puzzles</a>, arXiv:1203.3602 [cs.DS], 2012-2014. %e A254575 Triangle T(n,k) begins: %e A254575 1; %e A254575 1, 2, -1, -2; %e A254575 1, 2, -1, -2, 3, 2, 1, -2, -1, -3; %e A254575 1, 2, -1, -2, 3, 4, -3, -4, 2, 1, -2, -1, 4, 3, -4, -3; %p A254575 r:= s-> seq(-s[-k], k=1..nops(s)): %p A254575 T:= proc(n) option remember; `if`(n=1, 1, (m-> %p A254575 ((x, y)-> [x[], y[], r(x), r(y)][])([T(m)], %p A254575 map(h-> h+sign(h)*m, [T(n-m)])))(iquo(n+1, 2))) %p A254575 end: %p A254575 seq(T(n), n=1..7); %t A254575 r[s_List] := -Reverse[s]; %t A254575 T[1] = {1}; T[n_] := T[n] = Module[{ m = Quotient[n+1, 2]}, Function[{x, y}, {x, y, r[x], r[y]} // Flatten][T[m], Function[h, h + Sign[h]*m] /@ T[n - m]]]; %t A254575 Table[T[n], {n, 1, 7}] // Flatten (* _Jean-François Alcover_, Nov 06 2017, after _Alois P. Heinz_ *) %Y A254575 Row sums give A063524. %Y A254575 Cf. A053644, A062383, A073121. %K A254575 sign,tabf,look %O A254575 1,3 %A A254575 _Alois P. Heinz_, Feb 01 2015