cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254577 Total number of factors over all ordered factorizations of n.

This page as a plain text file.
%I A254577 #13 Feb 03 2019 09:03:41
%S A254577 1,1,1,3,1,5,1,8,3,5,1,18,1,5,5,20,1,18,1,18,5,5,1,56,3,5,8,18,1,31,1,
%T A254577 48,5,5,5,75,1,5,5,56,1,31,1,18,18,5,1,160,3,18,5,18,1,56,5,56,5,5,1,
%U A254577 132,1,5,18,112,5,31,1,18,5,31,1,264,1,5,18,18,5
%N A254577 Total number of factors over all ordered factorizations of n.
%C A254577 What is the limit log(Sum_{k=1..n} a(k)) / log(n) ?. - _Vaclav Kotesovec_, Feb 03 2019
%H A254577 Alois P. Heinz, <a href="/A254577/b254577.txt">Table of n, a(n) for n = 1..10000</a>
%H A254577 Vaclav Kotesovec, <a href="/A254577/a254577.jpg">Graph log(Sum_{k=1..n} a(k)) / log(n), 10^8 terms</a>
%F A254577 Dirichlet generating function: zeta(s)/(1 - zeta(s))^2.
%F A254577 a(n) = Sum_{k>=1} A251683(n,k)*k.
%e A254577 a(20)=18 because in the ordered factorizations of twenty: 20, 2*10, 4*5, 5*4, 10*2, 2*2*5, 2*5*2, 5*2*2 there are a total of 18 factors.
%p A254577 with(numtheory):
%p A254577 b:= proc(n) option remember; expand(x*(1+
%p A254577       add(b(n/d), d=divisors(n) minus {1, n})))
%p A254577     end:
%p A254577 a:= n-> (p-> add(coeff(p, x, i)*i, i=1..degree(p)))(b(n)):
%p A254577 seq(a(n), n=1..100);  # _Alois P. Heinz_, Feb 01 2015
%t A254577 f[n_] := f[n] =Level[Table[Map[Prepend[#, d] &, f[n/d]], {d,Rest[Divisors[n]]}], {2}];
%t A254577 f[1] = {{}};
%t A254577 g[list_] := Sum[list[[i]] i, {i, 1, Length[list]}];
%t A254577 Prepend[Rest[Map[g,Map[Table[Count[#, i], {i, 1, Max[#]}] &,Map[Length, Map[Sort, Table[f[n], {n, 1, 60}]], {2}]]]], 1]
%Y A254577 Cf. A074206.
%K A254577 nonn
%O A254577 1,4
%A A254577 _Geoffrey Critzer_, Feb 01 2015