A254595 Least positive integer m such that m can be written as x*(x+1) + y*(3*y+1)/2 + z*(3*z-1)/2 in exactly n ways, where x,y,z are nonnegative integers.
1, 2, 9, 7, 14, 37, 64, 68, 57, 119, 112, 168, 194, 147, 267, 259, 222, 477, 427, 404, 519, 652, 567, 497, 512, 749, 722, 719, 952, 1209, 904, 1139, 1267, 1184, 1069, 1737, 1594, 1667, 1734, 2077, 1799, 1659, 1729, 1814, 1762, 1862, 2577, 2444, 2997, 2072, 2457, 2842, 3029, 3249, 3094, 3589, 3999, 4208, 3479, 3232
Offset: 1
Keywords
Examples
a(3) = 9 since 9 is the first positive integer m with A254573(m)=3. Note that 9 = 2*3 +1*(3*1+1)/2 + 1*(3*1-1)/2 = 1*2 + 1*(3*1+1)/2 + 2*(3*2-1)/2 = 1*2 + 2*(3*2+1)/2 + 0*(3*0-1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
Programs
-
Mathematica
sQ[n_]:=IntegerQ[Sqrt[4n+1]] Do[Do[m=0;Label[aa];m=m+1;r=0;Do[If[sQ[m-y(3y+1)/2-z(3z-1)/2],r=r+1;If[r>n,Goto[aa]]],{y,0,(Sqrt[24m+1]-1)/6}, {z,0,(Sqrt[24(m-y(3y+1)/2)+1]+1)/6}]; If[r==n,Print[n," ",m];Goto[bb],Goto[aa]]]; Label[bb];Continue,{n,1,60}]
Comments