cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254618 a(n) = k-tuple deficiency of n-th deficient number.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 4, 4, 2, 2, 5, 5, 6, 2, 2, 3, 6, 2, 1, 7, 3, 2, 2, 3, 6, 1, 3, 2, 7, 3, 2, 2, 1, 7, 8, 2, 4, 3, 4, 9, 2, 3, 3, 4, 2, 2, 2, 3, 4, 3, 2, 5, 4, 2, 2, 1, 5, 5, 3, 2, 1, 2, 2, 3, 9, 7, 2, 4, 6, 4, 4, 2, 2, 3, 4, 2, 2, 8, 1, 2, 2, 2, 3, 2, 3, 5
Offset: 1

Views

Author

Paolo P. Lava, Feb 03 2015

Keywords

Comments

For any deficient number x iterate the process f(x)=sigma(x)-x. Sequence lists how many times f(x) keeps deficient until it reaches zero.
Non-deficient numbers are excluded from this sequence.
k-tuple deficiency records is A000027.
k-tuple deficiency record-holders is A234899.

Examples

			a(20) = 1 because the 20th deficient number is 25 and:
1) f(25) = sigma(25) - 25 = 6 < 25.
We must stop here because 6 is abundant.
a(21) = 7 because the 21st deficient number is 26 and:
1) f(26) = sigma(26) - 26 = 16 < 26;
2) f(16) = sigma(16) - 16 = 15 < 16;
3) f(15) = sigma(15) - 15 = 9 < 15;
4) f(9) = sigma(9) - 9 = 4 < 9;
5) f(4) = sigma(4) - 4 = 3 < 4;
6) f(3) = sigma(3) - 3 = 2 < 1;
7) f(1) = sigma(1) - 1 = 0 < 1.
We must stop here because sigma(0) is not defined.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,n,t;
    for n from 1 to q do t:=0; b:=sigma(n)-n; a:=n;
    if b