cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254627 Indices of centered pentagonal numbers (A005891) that are also triangular numbers (A000217).

This page as a plain text file.
%I A254627 #32 Sep 08 2022 08:46:11
%S A254627 1,2,11,28,189,494,3383,8856,60697,158906,1089155,2851444,19544085,
%T A254627 51167078,350704367,918155952,6293134513,16475640050,112925716859,
%U A254627 295643364940,2026369768941,5305104928862,36361730124071,95196245354568,652484772464329
%N A254627 Indices of centered pentagonal numbers (A005891) that are also triangular numbers (A000217).
%C A254627 Also positive integers y in the solutions to x^2 - 5*y^2 + x + 5*y - 2 = 0, the corresponding values of x being A254626.
%C A254627 Also indices of centered pentagonal numbers (A005891) that are also hexagonal numbers (A000384). - _Colin Barker_, Feb 11 2015
%H A254627 Colin Barker, <a href="/A254627/b254627.txt">Table of n, a(n) for n = 1..1000</a>
%H A254627 Hermann Stamm-Wilbrandt, <a href="/A254627/a254627_1.svg">6 interlaced bisections</a>
%H A254627 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,18,-18,-1,1).
%F A254627 a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).
%F A254627 G.f.: x*(1+x-9*x^2-x^3)/((1-x)*(1+4*x-x^2)*(1-4*x-x^2)).
%F A254627 a(n) = (10 - sqrt(5)*(2-sqrt(5))^n - 5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + sqrt(5)*(2+sqrt(5))^n + (-2-sqrt(5))^n*(-5+2*sqrt(5)))/20. - _Colin Barker_, Jun 06 2016
%F A254627 a(2*n+2) = A232970(2*n+1); a(2*n+1) = A110679(2*n). See "6 interlaced bisections" link. - _Hermann Stamm-Wilbrandt_, Apr 18 2019
%F A254627 a(n) = (2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4. - _G. C. Greubel_, Apr 19 2019
%e A254627 2 is in the sequence because the 2nd centered pentagonal number is 6, which is also the 3rd triangular number.
%t A254627 CoefficientList[Series[x (x^3 + 9 x^2 - x - 1)/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 25}], x] (* _Michael De Vlieger_, Jun 06 2016 *)
%t A254627 LinearRecurrence[{1,18,-18,-1,1},{1,2,11,28,189},30] (* _Harvey P. Dale_, Apr 23 2017 *)
%o A254627 (PARI) Vec(x*(x^3+9*x^2-x-1)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^30))
%o A254627 (PARI) {a(n) = (2 +(1+3*(-1)^n)*fibonacci(3*n) - 2*(-1)^n*fibonacci(3*n+1))/4}; \\ _G. C. Greubel_, Apr 19 2019
%o A254627 (Magma) [(2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4 : n in [1..30]]; // _G. C. Greubel_, Apr 19 2019
%o A254627 (Sage) [(2 +(1+3*(-1)^n)*fibonacci(3*n) -2*(-1)^n*fibonacci(3*n+1))/4 for n in (1..30)] # _G. C. Greubel_, Apr 19 2019
%Y A254627 Cf. A000217, A005891, A254626, A254628.
%Y A254627 Cf. A000384, A254962.
%K A254627 nonn,easy
%O A254627 1,2
%A A254627 _Colin Barker_, Feb 03 2015