A254631 Number of ways to write n as x*(x+1)/2 + y*(3*y+2) + z*(3*z-2) with x,y,z nonnegative integers.
1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 1, 3, 1, 1, 2, 2, 4, 2, 2, 2, 2, 3, 3, 3, 2, 1, 3, 5, 2, 3, 1, 2, 2, 2, 5, 1, 5, 4, 2, 2, 3, 5, 3, 3, 4, 4, 3, 3, 2, 3, 2, 3, 3, 2, 3, 5, 4, 5, 3, 2, 5, 4, 6, 2, 2, 3, 6, 3, 3, 4, 3, 7, 3, 4, 3, 2, 4, 4, 4, 6, 3, 3, 4, 4, 4, 5, 5, 4, 3, 2, 3, 5, 8, 3, 3, 3, 7, 3, 3, 8, 4
Offset: 0
Keywords
Examples
a(13) = 1 since 13 = 0*1/2 + 1*(3*1+2) + 2*(3*2-2). a(30) = 1 since 30 = 3*4/2 + 2*(3*2+2) + 2*(3*2-2). a(35) = 1 since 35 = 1*2/2 + 3*(3*3+2) + 1*(3*1-2).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
Programs
-
Mathematica
TQ[n_]:=IntegerQ[Sqrt[8n+1]] Do[r=0;Do[If[TQ[n-y(3y+2)-z(3z-2)],r=r+1],{y,0,(Sqrt[3n+1]-1)/3},{z,0,(Sqrt[3(n-y(3y+2))+1]+1)/3}]; Print[n," ",r];Continue,{n,0,100}]
Comments