A254632 Triangle read by rows, T(n, k) = 4^n*[x^k]hypergeometric([3/2, -n], [3], -x), n>=0, 0<=k<=n.
1, 4, 2, 16, 16, 5, 64, 96, 60, 14, 256, 512, 480, 224, 42, 1024, 2560, 3200, 2240, 840, 132, 4096, 12288, 19200, 17920, 10080, 3168, 429, 16384, 57344, 107520, 125440, 94080, 44352, 12012, 1430, 65536, 262144, 573440, 802816, 752640, 473088, 192192, 45760, 4862
Offset: 0
Examples
[ 1] [ 4, 2] [ 16, 16, 5] [ 64, 96, 60, 14] [ 256, 512, 480, 224, 42] [1024, 2560, 3200, 2240, 840, 132] [4096, 12288, 19200, 17920, 10080, 3168, 429]
Programs
-
Maple
h := n -> simplify(hypergeom([3/2, -n], [3], -x)): seq(print(seq(4^n*coeff(h(n), x, k), k=0..n)), n=0..9);
-
Mathematica
T[n_, k_] := 4^(n-k) Binomial[n, k] CatalanNumber[k+1]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 28 2019 *)
-
Sage
A254632 = lambda n,k: (4)^(n-k)*binomial(n,k)*catalan_number(k+1) for n in range(7): [A254632(n,k) for k in (0..n)]