This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254633 #18 Jun 11 2024 01:36:48 %S A254633 1,16,480,17920,752640,34062336,1623638016,80408739840,4100845731840, %T A254633 214072431738880,11388653368508416,615465127495335936, %U A254633 33704042696173158400,1866685441634205696000,104401050057113075712000,5889038054986331298201600,334693662791723162114457600 %N A254633 a(n) = 16^n*[x^n]hypergeometric([3/2, -2*n], [3], -x). %F A254633 a(n) = 4^n*C(2*n,n)*C(2*n+2,n+1)/(n+2). %F A254633 a(n) = (2^(6*n+2)*Gamma(n+1/2)*Gamma(n+3/2))/(Pi*Gamma(n+1)*Gamma(n+3)). %F A254633 a(n) = A254632(2*n,n). %F A254633 a(n) = 4^n * A172392(n). %F A254633 a(n) = [x^n]hypergeom([1/2, 3/2], [3], 64*x). %F A254633 a(n) = a(n-1)*( 16*(4*n^2-1)/(n*(n+2)) ) for n >= 1. %p A254633 a := n -> 16^n*coeff(simplify(hypergeom([3/2, -2*n], [3], -x)), x, n): %p A254633 seq(a(n), n=0..16); %p A254633 a_list := len -> seq(coeff(series(hypergeom([1/2, 3/2],[3],64*x),x,len+1),x,n),n=0..len); %p A254633 a_list(16); %Y A254633 Cf. A172392, A254632. %K A254633 nonn %O A254633 0,2 %A A254633 _Peter Luschny_, Feb 03 2015