This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254636 #18 Oct 15 2024 04:28:25 %S A254636 0,1,2,3,4,5,6,7,9,10,12,13,16,18,21,22,25,28,30,33,36,37,40,42,45,46, %T A254636 52,57,58,60,61,66,70,72,73,78,81,82,85,88,93,96,100,102,105,106,108, %U A254636 112,117,121,126,130,133,136,138,141,145,148,150,156,157,162,165,166,172 %N A254636 Numbers that cannot be represented as x*y + x + y, where x>=y>1. %C A254636 0, 7 and numbers n such that n+1 is either prime or twice a prime. - _Robert Israel_, Aug 05 2015 %p A254636 sort([0,7, op(select(t -> isprime(t+1), [$1..10^4])), op(select(t -> isprime((t+1)/2),[2*i+1$i=1..5*10^3]))]); # _Robert Israel_, Aug 05 2015 %t A254636 r[n_] := Reduce[x >= y > 1 && n == x y + x + y, {x, y}, Integers]; %t A254636 Reap[For[n = 0, n <= 200, n++, If[r[n] === False, Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Feb 28 2019 *) %o A254636 (Python) %o A254636 from sympy import primepi %o A254636 def A254636(n): %o A254636 def bisection(f,kmin=0,kmax=1): %o A254636 while f(kmax) > kmax: kmax <<= 1 %o A254636 while kmax-kmin > 1: %o A254636 kmid = kmax+kmin>>1 %o A254636 if f(kmid) <= kmid: %o A254636 kmax = kmid %o A254636 else: %o A254636 kmin = kmid %o A254636 return kmax %o A254636 def f(x): return int(n-1+x-(x>=7)-primepi(x+1)-primepi(x+1>>1)) %o A254636 return bisection(f,n-1,n-1) # _Chai Wah Wu_, Oct 14 2024 %Y A254636 Cf. A091529 (appears to be essentially the same, except first few terms). %Y A254636 Cf. A253975. %K A254636 nonn %O A254636 1,3 %A A254636 _Alex Ratushnyak_, Feb 03 2015