A254639 Least positive integer m such that A254631(m) = n.
2, 1, 6, 16, 27, 62, 71, 92, 122, 161, 176, 216, 286, 386, 351, 491, 577, 492, 781, 866, 1023, 617, 736, 1002, 1504, 1441, 1402, 1297, 1451, 1562, 1842, 2166, 1682, 1331, 2626, 2311, 2332, 2969, 3177, 2761, 2876, 3641, 3261, 3697, 3586, 4894, 3576, 3921, 4482, 4542
Offset: 1
Keywords
Examples
a(3) = 6 since 6 is the least positive integer m with A254631(m) = 3. Note that 6 = 0*1/2 + 1*(3*1+2) + 1*(3*1-2) = 1*2/2 + 1*(3*1+2) + 0*(3*0-2) = 3*4/2 + 0*(3*0+2) + 0*(3*0-2).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..160
- Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
Programs
-
Mathematica
TQ[n_]:=IntegerQ[Sqrt[8n+1]] Do[Do[m=0;Label[aa];m=m+1;r=0;Do[If[TQ[m-y(3y+2)-z(3z-2)],r=r+1;If[r>n, Goto[aa]]],{y,0,(Sqrt[3m+1]-1)/3},{z,0,(Sqrt[3(m-y(3y+2))+1]+1)/3}]; If[r==n,Print[n, " ", m];Goto[bb],Goto[aa]]];Label[bb];Continue,{n,1,50}]
Comments