This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254652 #9 Dec 09 2018 17:51:23 %S A254652 1,4,88,421,9661,46288,1062604,5091241,116876761,559990204, %T A254652 12855381088,61593831181,1413975042901,6774761439688,155524399338004, %U A254652 745162164534481,17106269952137521,81961063337353204,1881534170335789288,9014971804944317941 %N A254652 Indices of pentagonal numbers (A000326) which are also centered heptagonal numbers (A069099). %C A254652 Also positive integers x in the solutions to 3*x^2 - 7*y^2 - x + 7*y - 2 = 0, the corresponding values of y being A254653. %H A254652 Colin Barker, <a href="/A254652/b254652.txt">Table of n, a(n) for n = 1..980</a> %H A254652 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,110,-110,-1,1). %F A254652 a(n) = a(n-1)+110*a(n-2)-110*a(n-3)-a(n-4)+a(n-5). %F A254652 G.f.: -x*(x^2-4*x+1)*(x^2+7*x+1) / ((x-1)*(x^4-110*x^2+1)). %e A254652 4 is in the sequence because the 4th pentagonal number is 22, which is also the 3rd centered heptagonal number. %t A254652 LinearRecurrence[{1,110,-110,-1,1},{1,4,88,421,9661},30] (* _Harvey P. Dale_, Dec 09 2018 *) %o A254652 (PARI) Vec(-x*(x^2-4*x+1)*(x^2+7*x+1)/((x-1)*(x^4-110*x^2+1)) + O(x^100)) %Y A254652 Cf. A000326, A069099, A254653, A254654. %K A254652 nonn,easy %O A254652 1,2 %A A254652 _Colin Barker_, Feb 04 2015