cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254654 Pentagonal numbers (A000326) which are also centered heptagonal numbers (A069099).

This page as a plain text file.
%I A254654 #15 Jan 10 2025 18:46:46
%S A254654 1,22,11572,265651,139997551,3213845272,1693690359922,38881099834501,
%T A254654 20490265834338301,470383542583947322,247891234370134405072,
%U A254654 5690700059299494866551,2998988132919620198222251,68846088847021746311586172,36281758184170330787958387022
%N A254654 Pentagonal numbers (A000326) which are also centered heptagonal numbers (A069099).
%H A254654 Colin Barker, <a href="/A254654/b254654.txt">Table of n, a(n) for n = 1..490</a>
%H A254654 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,12098,-12098,-1,1).
%F A254654 a(n) = a(n-1)+12098*a(n-2)-12098*a(n-3)-a(n-4)+a(n-5).
%F A254654 G.f.: -x*(x^4+21*x^3-548*x^2+21*x+1) / ((x-1)*(x^2-110*x+1)*(x^2+110*x+1)).
%e A254654 22 is in the sequence because it is the 4th pentagonal number and the 3rd centered heptagonal number.
%t A254654 CoefficientList[Series[(x^4 + 21*x^3 - 548*x^2 + 21*x + 1)/((1 - x)*(x^2 - 110*x + 1)*(x^2 + 110*x + 1)), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Jan 19 2017 *)
%t A254654 LinearRecurrence[{1,12098,-12098,-1,1},{1,22,11572,265651,139997551},20] (* _Harvey P. Dale_, Jan 10 2025 *)
%o A254654 (PARI) Vec(-x*(x^4+21*x^3-548*x^2+21*x+1)/((x-1)*(x^2-110*x+1)*(x^2+110*x+1)) + O(x^100))
%o A254654 (Magma) I:=[1,22,11572,265651,139997551]; [n le 5 select I[n] else Self(n-1)+12098*Self(n-2)-12098*Self(n-3)-Self(n-4)+Self(n-5): n in [1..20]]; // _Vincenzo Librandi_, Jan 20 2017
%Y A254654 Cf. A000326, A069099, A254652, A254653.
%K A254654 nonn,easy
%O A254654 1,2
%A A254654 _Colin Barker_, Feb 04 2015