cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254680 Least positive integer m with A254661(m) = n.

Original entry on oeis.org

1, 3, 7, 17, 21, 51, 66, 72, 157, 147, 121, 136, 246, 297, 332, 367, 402, 506, 547, 577, 677, 796, 892, 731, 926, 1216, 1116, 976, 1181, 1402, 1556, 1416, 1507, 1496, 2287, 1622, 1977, 2112, 1942, 2131, 2017, 2882, 2767, 2501, 3162, 3671, 3097, 3187, 3047, 3762, 3867, 2952, 4356, 4111, 4826, 5112, 5211, 4811, 4686, 5461
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 05 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. Moreover, no term is divisible by 5, and no term with n>2 is congruent to 3 modulo 5.

Crossrefs

Programs

  • Maple
    a(3) = 7 since 7 is the first positive integer that can be written as x*(x+1)/2 + (2y)^2 + z*(3*z+1)/2 (with x,y,z nonnegative integers) in exactly 3 ways. In fact, 7 = 0*1/2 + 0^2 +2*(3*2+1)/2 = 1*2/2 + 2^2 +1*(3*1+1)/2 = 2*3/2 + 2^2 + 0*(3*0+1)/2.
  • Mathematica
    TQ[n_]:=IntegerQ[Sqrt[8n+1]]
    Do[Do[m=0;Label[aa];m=m+1;r=0;Do[If[TQ[m-4y^2-z(3z+1)/2],r=r+1;If[r>n,Goto[aa]]],{y,0,Sqrt[m/4]}, {z,0,(Sqrt[24(m-4y^2)+1]-1)/6}];
    If[r==n,Print[n," ",m];Goto[bb],Goto[aa]]]; Label[bb];Continue,{n,1,60}]

A254668 Number of ways to write n as the sum of a square, a second pentagonal number, and a hexagonal number.

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 2, 3, 3, 3, 2, 2, 3, 1, 1, 3, 5, 6, 2, 3, 1, 2, 4, 2, 4, 3, 4, 3, 3, 2, 4, 7, 4, 4, 2, 2, 4, 3, 3, 4, 3, 5, 5, 3, 6, 3, 5, 4, 2, 4, 4, 6, 5, 3, 2, 6, 5, 7, 4, 3, 2, 4, 4, 4, 7, 3, 8, 4, 5, 3, 5, 6, 8, 3, 2, 3, 4, 9, 2, 8, 3, 7, 7, 4, 5, 5, 4, 4, 4, 6, 5, 4, 6, 7, 9, 2, 8, 4, 3, 4, 3
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 04 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n. Also, a(n) = 1 only for n = 0, 5, 13, 14, 20, 112, 125.
Compare this conjecture with the conjecture in A160324.
The conjecture that a(n) > 0 for all n = 0,1,2,... appeared in Conjecture 1.2(ii) of the author's JNT paper in the links. - Zhi-Wei Sun, Oct 03 2016

Examples

			a(20) = 1 since 20 = 2^2 + 3*(3*3+1)/2 + 1*(2*1-1).
a(112) = 1 since 112 = 7^2 + 6*(3*6+1)/2 + 2*(2*2-1).
a(125) = 1 since 125 = 5^2 + 8*(3*8+1)/2 + 0*(2*0-1).
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-y(3y+1)/2-z(2z-1)],r=r+1],{y,0,(Sqrt[24n+1]-1)/6},{z,0,(Sqrt[8(n-y(3y+1)/2)+1]+1)/4}];
    Print[n," ",r];Continue,{n,0,100}]
Showing 1-2 of 2 results.