A254662 Numbers of words on alphabet {0,1,...,7} with no subwords ii, where i is from {0,1,...,4}.
1, 8, 59, 437, 3236, 23963, 177449, 1314032, 9730571, 72056093, 533584364, 3951258827, 29259564881, 216670730648, 1604473809179, 11881328856197, 87982723420916, 651523050515003, 4824609523867769, 35726835818619392, 264561679301939051, 1959112262569431533
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,3).
Programs
-
Magma
[n le 1 select 8^n else 7*Self(n)+3*Self(n-1): n in [0..20]];
-
Mathematica
RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 3 a[n - 2]}, a[n], {n, 0, 20}]
-
PARI
Vec((1+x)/(1-7*x-3*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016
Formula
G.f.: (1 + x)/(1 - 7*x -3*x^2).
a(n) = 7*a(n-1) + 3*a(n-2) with n>1, a(0) = 1, a(1) = 8.
a(n) = (2^(-1-n) * ((7-sqrt(61))^n * (-9+sqrt(61)) + (7+sqrt(61))^n * (9+sqrt(61)))) / sqrt(61). - Colin Barker, Sep 08 2016