This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254666 #33 Jul 02 2023 02:23:16 %S A254666 9,3,0,1,0,4,3,1,6,3,0,3,6,1,6,6,8,2,2,9,9,4,5,3,0,6,2,4,0,7,2,6,1,6, %T A254666 0,0,3,3,3,5,3,3,2,0,5,8,0,7,3,4,6,3,8,5,4,8,0,8,2,8,9,4,4,1,0,5,1,3, %U A254666 6,4,6,5,2,2,8,6,7,5,8,3,4,8,3,8,8,3,1,7,4,4,3,8,0,7,7,3,2,4,3,6,8,9,9,9,7,8,4 %N A254666 Decimal expansion of the right Alzer's constant. %C A254666 The right Alzer's constant x is defined to be the best constant in the right Alzer's inequality: abs(cos a + sin a) <= x*abs(cos(cos a) + cos(sin a)), where a is any real number. %H A254666 Horst Alzer, <a href="https://doi.org/10.4171/EM/139">A trigonometric double-inequality</a>, Elemente der Mathematik 65 (2010), 45-48. %F A254666 Equals (sqrt(2)*cos(1/sqrt(2)))^(-1). %e A254666 0.9301043163036166822994530624072616003335332058073463854808289441... %t A254666 RealDigits[1/(Sqrt[2]*Cos[1/Sqrt[2]]), 10, 120][[1]] (* _Amiram Eldar_, Jun 12 2023 *) %o A254666 (PARI) 1/(sqrt(2)*cos(1/sqrt(2))) \\ _Michel Marcus_, Feb 05 2015 %Y A254666 Cf. A254615. %K A254666 nonn,cons %O A254666 0,1 %A A254666 _Roman Witula_, Feb 04 2015 %E A254666 a(99) corrected by _Georg Fischer_, Aug 12 2021