cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254675 Indices of centered triangular numbers (A005448) which are also heptagonal numbers (A000566).

This page as a plain text file.
%I A254675 #6 Jun 13 2015 00:55:24
%S A254675 1,13,44,776,2697,48069,167140,2979472,10359953,184679165,642149916,
%T A254675 11447128728,39802934809,709537301941,2467139808212,43979865591584,
%U A254675 152922865174305,2726042129376237,9478750500998668,168970632155735080,587529608196743081
%N A254675 Indices of centered triangular numbers (A005448) which are also heptagonal numbers (A000566).
%C A254675 Also positive integers y in the solutions to 5*x^2 - 3*y^2 - 3*x + 3*y - 2 = 0, the corresponding values of x being A254674.
%H A254675 Colin Barker, <a href="/A254675/b254675.txt">Table of n, a(n) for n = 1..1000</a>
%H A254675 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,62,-62,-1,1).
%F A254675 a(n) = a(n-1)+62*a(n-2)-62*a(n-3)-a(n-4)+a(n-5).
%F A254675 G.f.: x*(12*x^3+31*x^2-12*x-1) / ((x-1)*(x^2-8*x+1)*(x^2+8*x+1)).
%e A254675 13 is in the sequence because the 13th centered triangular number is 235, which is also the 10th heptagonal number.
%o A254675 (PARI) Vec(x*(12*x^3+31*x^2-12*x-1)/((x-1)*(x^2-8*x+1)*(x^2+8*x+1)) + O(x^100))
%Y A254675 Cf. A000566, A005448, A254674, A254676.
%K A254675 nonn,easy
%O A254675 1,2
%A A254675 _Colin Barker_, Feb 05 2015