This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254682 #36 Jan 27 2022 03:09:07 %S A254682 1,37,418,2754,13080,49632,159654,452166,1157013,2724865,5988268, %T A254682 12410476,24456744,46132152,83740980,146935284,250134753,414416277, %U A254682 669990046,1059399550,1641605680,2497140360,3734542890,5498322570 %N A254682 Fifth partial sums of fifth powers (A000584). %H A254682 Luciano Ancora, <a href="/A254682/b254682.txt">Table of n, a(n) for n = 1..1000</a> %H A254682 Luciano Ancora, <a href="/A254640/a254640_1.pdf">Partial sums of m-th powers with Faulhaber polynomials</a>. %H A254682 Luciano Ancora, <a href="/A254647/a254647_2.pdf"> Pascal's triangle and recurrence relations for partial sums of m-th powers </a>. %H A254682 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1). %F A254682 G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^11. %F A254682 a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(- 2 + 5*n + n^2)*(9 + 10*n + 2*n^2)/60480. %F A254682 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^5. %F A254682 Sum_{n>=1} 1/a(n) = 475867/180 - (2560/13)*sqrt(7)*Pi*tan(sqrt(7)*Pi/2) + (210/13)*sqrt(3/11)*Pi*tan(sqrt(33)*Pi/2). - _Amiram Eldar_, Jan 27 2022 %e A254682 Fifth differences: 1, 27, 93, 119, 120, (repeat 120) (A101100) %e A254682 Fourth differences: 1, 28, 121, 240, 360, 480, ... (A101095) %e A254682 Third differences: 1, 29, 150, 390, 750, 1230, ... (A101096) %e A254682 Second differences: 1, 30, 180, 570, 1320, 2550, ... (A101098) %e A254682 First differences: 1, 31, 211, 781, 2101, 4651, ... (A022521) %e A254682 ------------------------------------------------------------------------- %e A254682 The fifth powers: 1, 32, 243, 1024, 3125, 7776, ... (A000584) %e A254682 ------------------------------------------------------------------------- %e A254682 First partial sums: 1, 33, 276, 1300, 4425, 12201, ... (A000539) %e A254682 Second partial sums: 1, 34, 310, 1610, 6035, 18236, ... (A101092) %e A254682 Third partial sums: 1, 35, 345, 1955, 7990, 26226, ... (A101099) %e A254682 Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ... (A254644) %e A254682 Fifth partial sums: 1, 37, 418, 2754, 13080, 49632, ... (this sequence) %t A254682 Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (- 2 + 5 n + n^2) (9 + 10 n + 2 n^2)/60480, {n,24}] (* or *) %t A254682 CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^11, {x,0,23}], x] %t A254682 Nest[Accumulate,Range[30]^5,5] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,37,418,2754,13080,49632,159654,452166,1157013,2724865,5988268},30] (* _Harvey P. Dale_, Jan 30 2019 *) %o A254682 (PARI) a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(-2+5*n+n^2)*(9+10*n+2*n^2)/60480 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A254682 Cf. A000539, A000584, A022521, A101092, A101095, A101096, A101098, A101099, A101100, A254644, A254681, A254683, A254684. %K A254682 nonn,easy %O A254682 1,2 %A A254682 _Luciano Ancora_, Feb 12 2015